Abstract:
The present document describes mechanisms available in the generic SIMES platform to store new documents either produced by processing tools activated from the platform, either being parts of an existing data base, or being available somewhere in an acceptable electronic format. The approach relies on the following architectural choices Web, Coldfusion, Corba, and Com.

Résumé:
Ce document décrit les mécanismes mis en place dans la plate-forme générique SIMES pour stocker des nouveaux documents, qu’ils soient issus de traitements activés depuis la plate-forme, qu’ils constituent une base de données déjà existante, ou qu’il soient sous forme d’un document électronique dans un format acceptable. L’approche s’appuie sur les choix d’architecture suivants : Web, Coldfusion, Corba, and Com.
Storing new information

1. **INTRODUCTION** ... 3

2. **DOCUMENTS WAREHOUSES FILLING** .. 6
 2.1. **ADDITION OF FILES** .. 6
 2.2. **ADDITION OF DATA BASES** ... 6
 2.3. **ADDITION OF DATA PRODUCED BY THE PLATFORM TOOLS** 6
1. Introduction

The SIMES platform being intended to support environment applications, we firstly identified the functionalities which seemed common to these various applications.

The applications considered are the following ones:

- Fishing in the Niger Central Delta: it is an observatory offering services to collect information in specific files or data bases.
- Processing satellite or aerial images or ground photographs from various sources, using specialised tools, public or specifically developed within SIMES and applied on images and photographs related to the Niger Delta.
- Integrated modelling of the Niger Delta, demonstrating the need to aggregate data of different natures (hydrology, biomass, agriculture, population migrations, etc…) into one or more semantical models allowing knowledge elaboration.
- The Senegal river valley application, showing a global modelisation approach of all data regarding the river and handling processes creating new information.
- The National Herbarium of Cameroon, showing the needs for data structuring (depending on a predefined taxonomy) and, again, knowledge extraction by an expert system.

Functionalities required on the platform can be sketched as follows:

- Access to local data bases, and files
- Access to distant observatories
- Access to any kind of software for environment
- Calling tools (image processing, statistics, systemic modelling, expert systems, etc…)
- Storing documents
- Session and workspace management
- Exchanges with colleagues (groupware)
- And obviously feeding the data warehouses.

Relying on the architecture described in D1.1, and its complement D 1.3, it is possible to build a functional architecture for the SIMES systems, as is shown on figure 1 below.
Figure 1: Functionnal architecture of the platform
All these functionalities could be realised by first identifying a set of basic common mechanisms. This is what has been done in WP3.

The result is shown on figure 2, in which the layer "Conceptual interface" represents, simultaneously, the fact that these functionalities have been defined as objects with their relations, and that the underlying mechanisms are offered on the platform. They use the concepts of working session, activity, working space, user, right, role, warehouse, portfolio, view, history, etc. With these concepts, all the identified usage categories can be supported, and specifically the different warehouses filling procedures.

Figure 2: Conceptual integration
2. **Documents warehouses filling**

2.1. **Addition of files**

The cooperation space allows any user having the appropriate rights to manage the shared files - i.e. to store a new file, to modify an existing file, to edit its descriptive form, to remove it-, all from an ordinary Web browser. Similarly the user can, with the appropriate rights, move a file from one category to another one, re-organise the categories, define new categories, etc.

2.2. **Addition of data bases**

The platform relies on the ColdFusion technology from Allaire. It allows to build dynamic web sites and to interface them with data bases provided they are compliant with SQL and ODBC standards, and implemented on one of the widely used DBMS’s (Access, Oracle, etc.). A simple form allows to describe the parameters of the data base and the Coldfusion server allows then to access the data base. One ought then to modify the exploration space in order to include in it this new base. A guide for data base addition on the platform is also delivered (included in deliverable D 19).

2.3. **Addition of data produced by the platform tools**

The tools on the platform give access to primitives for modifying the cooperative space with the same controls as for an access through the web. So tools can store their results. A guide for tools encapsulation will allow to simply describe this interface. Some tools will be able to go further. It is the case for instance for the image processing tools. An image on the SIMES platform can be in different states, depending on the processes it has already undergone.

Figure 3 hereafter shows the current state of the interface for the data capture facility in the case of documents.
Figure 3 : Data capture facility interface
The schema below shows the successive states of an image undergoing successive processing steps. These steps will be implemented and the successive images states automatically managed. The storage of the image processing results encompasses also updating this states. In addition an image is represented by a directory containing the set of the different transformations results.

- **Image of grey levels** (standard format TIFF)
- **Image of contours** (binary)
The points on the contours are at 1, the others at 0
- **Chains of contour points** are ASCII files containing the sequence of chains coordinates with separator (* /ex) to separate chains
- **Segmentation into regions**
- **Image of labels** (in TIFF format)
 the points in the same region have the same label
- **Contours detection**
- **Contours Chaining**
- **Segments of identified contours**
 ASCII files containing the sequence of segments defined by the two extreme points, with a separator between points coordinates (# for example) and between two segments another separator (* for example).