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Foreword 
(a workshop in retrospect)

A few months have passed since we arranged the inaugural ERCIM workshop on Software
Intensive Dependable Embedded Systems. The event took place in Porto, Portugal, in
cooperation with EUROMICRO SEAA, EUROMICRO DSD, the European Integrated Project
DECOS (Dependable Embedded Components and Systems, FP6-IST-511764) and its DECOS
Interest Group (DIG).

One of the most irritating aspects of many conferences is the lack of discussion following
presentations. Usually this is because audiences are not given access to the papers prior to the
conference, and therefore have insufficient time to fully digest the work presented.  For this
workshop we intended things to be different. Participants were given advance access to all the
workshop papers, and asked as their ‘homework’ to prepare some questions. In addition, we
reduced the number of papers presented so that there was enough time for each to be treated
properly. To further promote the idea that we were going to do some work (workshop…), we
promised to include a transcript with ideas and questions in the final proceedings.

We spent two long half-days for the ten presentations. By dividing the day in two, we had enough
time to thoroughly discuss each paper, but were not too exhausted at the end of the day to
participate. In addition we were able to attend the invited keynote speeches at SEAA/DSD. Most
importantly however, there were plenty of opportunities for socializing and building a group
spirit.

Work after the event is also important, and one presenter was unfortunately unable to make the
presentation while he was in Porto. We tried very hard later to remedy this by arranging a video
conference. This solution has a great deal of potential, and we will use it again where necessary.
Further, in order to complete our discussions, correct our transcripts and so forth, we set up a
‘WIKI’-style Web site. Unfortunately this fell victim to computer-generated attacks, but with a
better technical set-up, it is definitely something that will be employed in the next event.

Not only participants at the ERCIM workshop, but also those present at the EUROMICRO
SEAA and DSD have received the booklet of proceedings. It is our hope that this will improve
the dissemination of our research and that cooperation and the sharing of knowledge between
ERCIM and EUROMICRO will be enhanced.

For the ERCIM Working Group on Software Intensive Dependable Embedded Systems, and
serving as your humble organizers of the workshop,

Amund Skavhaug and Erwin Schoitsch
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Message from the Euromicro Chairman
Euromicro is an international scientific, engineering and educational organization dedicated to advancing the 
arts, sciences and applications of Information Technology and Microelectronics. Euromicro's contributions to the
progress in this field are understood as a unique European focal point of activities. In pursuing the mission the 
highest professional and ethical standards are  observed; Euromicro is a non-profit organization. 

Euromicro was founded in 1975, in response to, and inspired by, the emerging microprocessor  technology. 
Since that time, Euromicro has been devoted to promoting, discussing, disseminating knowledge, information
and skills, in academia, industry, government and in education. As a truly international society Euromicro 
strictly adheres to impartiality in national and international affairs.  

A major focus of Euromicro´s activities was to organize conferences  for the area of Information Technology
and Microelectronics. Actually Euromicro is  running  four annual  international conferences:
x the Euromicro Conference on Software Engineering and Advanced Applications (SEAA);
x the Euromicro Conference on Digital System Design (DSD); 
x the Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP);
x the Euromicro Conference on  Real-Time Systems (ECRTS). 

The Conference Proceedings are published through IEEE Computer Press. Moreover, Euromicro  publishes the 
Journal of Systems Architecture (JSA), through Elsevier.  

The Euromicro activities inherently involve co-operation with other European scientific organisations. So, we
welcomed and appreciated the possibility of a joint effort with  ERCIM, in organizing this Workshop on 
Dependable Software Intensive Embedded Systems, in connection with our SEAA 2005 / DSD 2005 conference 
event in Porto, Portugal. 

I would like to thank Amund Skavhaug and all others involved in the preparation of this workshop, for their 
work to make this event a success.    I would also like to express my hope that   - in addition to the scientific
success – this workshop has also increased interest and motivation to participate in future Euromicro conference
events. 

Erwin Grosspietsch 
Chairman of the Euromicro Board of Directors  

http://www.euromicro.org
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The Integrated Project DECOS1

From a Federated to an Integrated Architecture for Dependable Safety-
Critical Embedded Systems – an Overview

 Erwin Schoitsch  
ARC Seibersdorf research 

erwin.schoitsch@arcs.ac.at 

Abstract 

In dependable embedded systems, currently each 
application function is assigned to a separate ECU 
(embedded control unit). Multi-tier supply chains as in 
automotive industry even enforce this approach to pro-
tect the IPs (Intellectual Property) of each supplier. 
With growing complexity of distributed systems and 
expanding functionality, this approach tends to be-
come critical because of integration problems. In the 
federated approach, integration requires all subsys-
tems to inherit the highest SIL (safety integrity level),
too many ECUs, buses and connectors decrease de-
pendability considerably. Therefore, research activi-
ties aim at an integrated approach, allowing the de-
ployment of multiple application subsystems on a sin-
gle distributed computer system [1]. DECOS is devel-
oping a generic architecture (middleware) based on 
time-triggered core technology, guaranteeing high 
dependability for critical embedded systems and allow-
ing integration of safety-critical and non-safety-
critical subsystems. It covers the full life-cycle, from 
the top-level platform independent models of the dis-
tributed application subsystems down  to the actual
deployment [5], taking into account software, hard-
ware and validation/certification issues as well. DE-
COS is domain- and platform independent, as long as 
certain requirements are fulfilled by the core platform 
(e.g. predictable temporal behavior). This is shown by 
demonstrators from the automotive, aerospace and 
industrial control area, and by implementation on 
three different core platforms: TTA (TTP/C, time trig-
gered architecture), Layered FlexRay and TT-
Ethernet. 

1. Introduction

“Smart Systems” are based on intelligent embedded
control systems, which are distributed within the appli-
cation systems, and often hidden to the every-day life 
user. E.g., more and more functions in today’s cars are 
realized by electronics and software, 80-90% of the 
new innovative features are realized by distributed 
embedded systems. Eventually, even highly safety
critical mechanical and hydraulic control systems will 
be replaced by electronic components. Value of elec-
tronics in cars will increase beyond 40% of the total 
value. Even today, upper class cars contain up to 80 
ECUs, several bus systems, and about 55% of failures 
are caused by electronics, software, cables and connec-
tors.  

The DECOS project [2] aims at making a signifi-
cant contribution to the safety of dependable embed-
ded systems by facilitating the systematic design and
deployment of integrated systems [1]. In federated 
systems, each application subsystem is located on a 
dedicated processor. The federated approach provides 
natural separation of application functions, but causes 
increased weight, electric energy consumption and cost
due to resource duplication and the large number of 
wires, buses and connectors. Integrated systems not
only help to alleviate this problem, they also permit 
communication among application functions. A re-
markable feature of the integrated DECOS architecture 
is that hardware nodes are capable of executing several 
tasks of application subsystems of different criticality 
(see fig. 4, fig. 5). Throughout this paper, we will use 
the notion of a node instead of processor or compo-
nent.  

1 Research supported in part by EC IST FP6 IP DECOS No. 511764 
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An integrated architecture provides a fixed number 
of nodes, each of which has certain properties (e.g., 
size of memory, computational power, I/O resources). 
All tasks have to be allocated such that given func-
tional and dependability constraints are satisfied. This 
is discussed in detail in [5]. 

DECOS started July 1st, 2004, and is planned to last 
for 3 years (June 30, 2007). The budget is about 14,3 
Mio €, funding about 9 Mio €. The project is per-
formed by 19 partners, which are: 
• ARCS (Austrian Research Centers Seibersdorf 

research), coordinator. 
• Universities: TU Vienna, TU Darmstadt, Budapest 

University of Technology and Economics, Univer-
sity of Kassel, University of Kiel, TU Hamburg-
Harburg 

• TTTech, Esterel, Infineon München (Technology 
Providers) 

• Audi AEV, Hella, Fiat Research Center CRF 
(Automotive Demonstrator) 

• Airbus Deutschland, EADS, Thales Avionics, 
Liebherr Aerospace Lindenberg (Aerospace Dem-
onstrator) 

• Profactor (Industrial Control Demonstrator) 
• Swedish Test- and Research Center (SP) 
 
The project is subdivided into subprojects, which are 
lead by core partners, each supported by a group of 
partners: 
• Architecture Design (TU Darmstadt, TU Vienna) 
• Component Design and Integration (TTTech) 
• Silicon Infrastructure (Infineon) 
• Validation and Certification (ARCS) 
• Automotive Application (Demonstrator) (Audi) 
• Aerospace Application (Airbus) 
• Industrial Control Application (Profactor) 
• Training, Dissemination, Standardization, Policy 

and Gender issues (ARCS) 
• IP Management and Co-ordination (ARCS) 
 
2. DECOS Motivation 
 
DECOS methodically targets, investigates, and 
develops approaches to significantly alleviate - 
elimination would be an idealised goal - the identified 
five key obstacles to the (mass) deployment of ad-
vanced electronic functions in distributed, hard real-
time and critical embedded systems by choosing an 
integrated architecture approach: 
 
• Electronic Hardware Cost (fewer ECUs, cables, 

connectors) 

• Enhanced Dependability by Design (clear parti-
tioning of safety-critical and non-safety-critical 
subsystems), 

• Development Cost (modular certification, reuse of 
software components, structured integration of 
communication and computational elements)  

• Diagnosis and Maintenance (diagnosis of transient 
and intermittent component failures) 

• Intellectual Property (IP) Protection (allocating 
software-jobs as “black-box” building blocks on 
target hardware in an encapsulated execution envi-
ronment and communication via virtual communi-
cation links) 

 
The intent is to provide an integrated distributed 

execution platform and a set of pre-validated hardware 
components and software modules and tools for the 
design of dependable embedded systems. Generic de-
sign solutions for integrated dependable systems will 
be developed such that the invariance of the design 
strategies and technology neutral interfaces are consid-
ered upfront as a design objective. System design ap-
proaches that are applicable to diverse application do-
mains will be considered, target areas are (but not re-
stricted to) automotive, aerospace, industrial control, 
railways, medical devices and systems, robotics, 
autonomous systems (other approaches, e.g. the Inte-
grated Modular Avionics System IMA in Airbus 380 
are domain specific). 
 
DECOS builds on the substantial results of previous 
European research projects (NextTTA, FIT, TTA, 
SETTA, RISE, X-By-Wire, PDCS, DEVA, DSOS). 
The components and tools (prototypes) developed 
within DECOS will cover: cluster design, middleware 
and code generators, validation and certification as 
well as systems-on-a-chip (SoC) for high dependability 
applications. 

 
3. DECOS Core Services and Architecture 
 

Applications are composed of subsystems of differ-
ent levels of criticality, e.g. crash prevention system, 
engine control system, door lock system, driver assis-
tance systems, comfort systems. 

The advantages of a federated system are encapsu-
lation and IPR protection by ECU separation, the clear 
disadvantages are cost, space, power consumption, 
complexity in cabling, connectors and buses (including 
higher EMC vulnerability). 

The integrated approach has the advantage of cost 
reduction, less space and weight, less power consump-
tion, software-only implementation, the dependability 
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benefit of fewer connectors, cables and ECUs. The 
research and design task is to cope with the disadvan-
tages: separation of jobs (to prohibit interference be-
tween “jobs” (software components or building 
blocks) in time and space). Therefore the main re-
quirements for a dependable integrated architecture 
are: 
• Predictable allocation of time slots to jobs in 

DASs (Distributed Application Subsystems, allo-
cated in nodes, see fig. 1, fig. 4) 

• Encapsulated Execution Environment (EEE) 
• Virtual  Communication Links to embed jobs as 

software components in DECOS nodes despite the 
non-existence of the dedicated ECU and bus 

 
A new challenge is the allocation of jobs, prede-

fined at design time, to meet performance, resource 
and dependability constraints.  

The properties (core services) required from any 
core platform are (see fig. 1): 

• Deterministic and timely message transport 
• Fault tolerant clock synchronization 
• Strong fault isolation 
• Consistent diagnosis of failing nodes 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Distributed Application Subsystems and Core 
Services 
 
On top of the (existing/assumed) core services, the 
DECOS High Level Services are developed within the 
DECOS project, including tools for generation of ap-
plications (deployment) from the PIM (platform inde-
pendent model) by transformations utilizing the hard-
ware specific model (HSM, Resource Specification), 
the PI (Platform Interface) and the platform specific 

model (PSM). The approach allows to reuse pre-
developed models, specifications and platform inter-
faces (PI) (see fig. 2 and fig. 3). 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: DECOS Development Hierarchy 
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Fig. 3: Development from Model to Deployment 
 

To reduce (mental) complexity, a DECOS applica-
tion is composed of (nearly) independent subsystems 
with precisely defined LIFs (linking interfaces), the 
internals are hidden. This is achieved by a well defined 
DECOS architecture. A DECOS node is a FCU (Fault 
Containment Unit) (see fig. 4). Each job is loaded into 
a separated EEE (Encapsulated Execution Environ-
ment), realized in hardware because of the need for 
safe separation of EEEs from each other. Each EEE 

Distributed Application Subsystem (DAS)

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Platform Interface Layer (PIL) and Middleware

Specific Platform
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can contain its partition OS (Operating System) as re-
quired by the job. The overall management of the EEE 
is performed by a Core Operating System taking care 
of the separation in space (memory) and time (fixed 
time slots are assigned to the job and partition, no 
other clock base is known and accessible to the job).  

 

 
 

 
Fig. 4: DECOS node (FCU – fault containment unit) 

 
The safety critical applications are connected to the 

underlying time-triggered bus infrastructure (network) 
via a basic connector unit and the safety critical con-
nector unit (SCCU). The non-safety critical applica-
tions and legacy systems are connected to the basic 
connector unit via the complex connector unit (CCU) 
to absolutely inhibit control flow from the non-safety 
critical applications to the safety-critical part of the 
system. This allows the non-safety critical subsystems 
to be of a lower criticality class (Safety Integrity Level, 
SIL, according to IEC 61508) than the critical subsys-
tems. 
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 Fig. 5: Detailed structure of DECOS System 
 

Following the same concept, gateways can be built 
to connect other buses in a safe manner to the time-
triggered core services (detailed structure see fig. 5). 

 
 

4. Component Design and Silicon Infra-
structure 
 
As part of the “Component Design” subproject, the 

Encapsulated Execution Environment is developed and 
implemented in hardware. Additionally, the virtual 
communication links and gateways, as described be-
fore, the extensive diagnostic services identifying all 
out-of-norm conditions, and the optimized fault toler-
ant layer are part of the work. 

Within the project, each hardware node currently 
consists of a single processor, the Infineon Tri-
Core1796, which will run the partition operating sys-
tem. It will host the application jobs, all connector 
units and - presumably - the communication controller, 
as shown below. The hardware fault-tolerant layer 
(HFTL) and hardware event layer (HEVL) with high 
level services (middleware) are implemented in FPGA 
(prototype for later System-on-Chip implementation, 
which cannot be part of the research project)(fig.6) 

 
 
 
 
 
 
 
 
 
 
 
Fig.6: Silicon Infrastructure–Prototype Implementation 
 
5. Towards Modular Certification: the Ge-

neric Safety Case 
 

The subproject “Validation and Certification” has 
the goal to facilitate certification of DECOS-based 
systems in a modular (component based) manner, mak-
ing use of properties of the DECOS core services, high 
level services, design and development process proper-
ties. Basis is the generic functional safety standard IEC 
61508. A comparison and evaluation of several domain 
specific standards and IEC 61508 has shown, that sys-
tems conforming to higher SIL levels of IEC 61508 or 
related standards fulfill the major requirements of do-
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main specific standards, such as IEC 50129 (railways), 
the evolving ISO 26262 automotive functional safety 
standard (the so-called FAKRA standard proposal) or 
RTCA/DO 178B for aircraft industry.  

A generic Test bench is developed, accumulating all 
the tools and the experience of the partners for valida-
tion of DECOS components and systems and follow-
ing the standards’ requirements and design processes 
from PIM modeling down to deployment, initiating the 
performance of adequate tests available from a reposi-
tory. The activities can be distributed and delegated to 
adequate test labs (e.g. EMC (Electromagnetic Com-
patibility) test labs for EMI (Electromagnetic Interfer-
ence), or HIFI (Heavy Ion Fault Injection) to a partner 
with adequate equipment etc.), the results to be col-
lected and a safety case being built from the documents 
for evaluation. A separate issue to be managed (only 
once per case) is the validation of tools and processes. 
Since DECOS is a research project and not for devel-
opment of products, certain issues will not be tackled 
during the project (QM System, strict development 
processes), but advice will be given how the require-
ments of standards could be fulfilled in a production 
process. 

In a first step towards certification, an approach to 
demonstrate certifiability of DECOS systems in a 

modular, component based (“incremental”) manner is 
the development of a “Generic Safety Case”. This 
safety case builds at this stage on the inherent assump-
tions and the assumed fulfillment of the requirements 
defined for all the subprojects (architecture claims, 
core services, high level services). It is up to the sub-
projects to prove that the requirements have been met 
or can be met in a production process (“certifiability”). 

The construct to be looked at is shown in fig. 7. It 
consists of the safety-critical part of a DECOS node, 
including the SCCU (safety–critical connector unit) 
and the PI (Platform Interface), but not the application, 
because only the generic part is looked at. The result is 
an evaluation and assessment of the contribution of the 
DECOS architecture to the safety of application sys-
tems, which is intended to be included in the safety 
case of DECOS-based applications and is expected to 
facilitate this part of the system certification. 
 
 
 
Fig. 7: DECOS node, view for Generic Safety Case 
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6. Conclusions 
 

DECOS will provide a set of methodologies and 
(prototype) tools for composable, integrated design of 
dependable, critical embedded systems, from top-level 
model (PIM) down to code generation and deploy-
ment, including validation, verification and certifica-
tion support. The goal is to facilitate re-use of soft-
ware-, hardware and middleware components by mak-
ing use of the high-level services developed by DE-
COS. This will be achieved by a platform and domain 
independent integrated architecture of the DECOS 
high level services and by support through the DECOS 
tool-chain. The approach will be evaluated by indus-
trial application subprojects (demonstrators) in the 
automotive, aerospace and industrial control domain.  

In the automotive application, a mixed criticality 
approach is demonstrated by integrating a door-control 
system and a critical crash warning and avoidance sys-
tem demonstrator (vehicle and environment simulator 
with DECOS hardware in-the-loop, based on layered 
FlexRay core technology). 

The aerospace demonstrator is a flap control sys-
tem for the Airbus outer flap control, a really critical 
application, with a gateway to the AFDX-bus of Air-
bus (see fig. 8). 
 

 
 

Fig.8: Airbus Outer Flap Control 
 
The industrial control demonstrator is control of a 

production- and business critical vibration control sys-
tem for high-end nano-imprinting machines, control-
ling piezo-electric sensor and actuator networks. The 
long term vision of this demonstrator is critical struc-
tural control of engineering structures (helicopter cab-
ins, aircraft wings, buildings, noise suppression etc.). 

In one of the experiments, some properties of time-
triggered Ethernet as core service will be evaluated. 
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Abstract 
 

This paper introduces adding a “partial” pipeline to a 
base embedded superscalar microprocessor 
implementation to achieve cost effective performance 
improvements. This method is  exemplified by adding a 
“partial” integer pipeline (IP) to the TriCore TM 2.0 

MCU/DSP core. The “partial” IP pipeline, designed 
based on TriCore 2.0 simulation results of the EEMBC 
benchmark suite, executes a subset of TriCore 2.0 IP 
instructions. We used the basic block sampling and 
simulation technique to simulate enhanced TriCore 2.0 
models, and obtained results indicating that adding the 
partial IP pipeline can achieve similar performance 
improvements to duplicating the full IP pipeline. Our 
approach can be applied to the early design stages of 
microprocessor development in order to explore design 
spaces. 

 
 
1. Introduction 
 

Duplicating an instruction pipeline of a base 
microarchitecture has been explored as an approach to 
improve the performance of a general purpose 
superscalar microprocessor[1]. The duplicated pipeline is 
implemented in hardware in the same way as the original 
pipeline of the base microarchitecture and can execute 
the same instruction set. Since not all instructions have 
the same execution probabilities, the additional silicon 
area of the duplicated pipeline required for those 
instructions with small execution probabilities can not 
achieve optimal cost effective performance 
improvements. 

Unlike processors at the high end that can afford to 
pay a very high premium for a small performance 
improvement [2], the embedded microprocessor and 
system are very sensitive to silicon area and cost [3] [4]. 
We customize this general approach of duplicating the 
full original pipeline, and suggest adding a partial 
pipeline to achieve a cost effective performance 
enhancement. The partial pipeline is designed to execute 

a subset of instructions of the original full pipeline which 
have the highest execution probabilities. This enables the 
partial pipeline to deliver more performance per unit of 
silicon area than an additional full pipeline.  

Our method is generic and can also be applied to 
adding other types of partial pipelines in addition to those 
discussed. In this paper, we choose TriCore 2.0 [4] [5] as 
a commercial example of an embedded superscalar 32 bit 
MCU/DSP microprocessor core for System-on-
Chip(SoC) automotive electronics to introduce and 
validate our approach. TriCore 2.0 has three pipelines: an 
integer pipeline (IP) for arithmetic and logic operations 
on data registers, a load store (LS) pipeline for address 
operations using address registers, and a loop (LP) 
pipeline for executing zero-overhead loops. We 
abstracted TriCore 2.0 and developed a 3-pipeline 
microprocessor model of the three pipelines, as the base 
microarchitecture in our study. 

The partial pipeline aims to provide cost effective 
performance enhancement of the base microarchitecture. 
To explore the design space of cost/performance 
tradeoffs, we designed eight different partial IP pipelines 
executing various subsets of TriCore 2.0 IP instructions 
that the original full IP pipeline can also execute. Those 
instructions were selected based on the instruction 
execution probabilities obtained from the statistics of the 
TriCore 2.0 simulation results, using the EEMBC’s 
automotive/industrial embedded microprocessor 
benchmark suite [6] consisting of sixteen benchmarks. 
Since the implementation of the multiplier and divider 
could take considerable silicon area and be very 
expensive based on [7], we split those eight partial IP 
pipelines equally into two groups, half with and half 
without the implementation of the multiplier and divider. 
We design this range of partial IP pipelines to explore the 
design space in relating to cost/performance tradeoffs, 
which are analyzed in an analytic approach, instead of a 
pure quantitative way. 

The partial pipelines described are used to enhance the 
base microarchitecture to form eight special 4-pipeline 
microarchitectures. In order to compare our approach 
with the conventional pipeline duplication approach, 
wealso duplicate the full IP pipeline of the base 
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microarchitecture and form a standard 4-pipeline 
microarchitecture. For this comparison, we simulate 
those microarchitectures with the EEMBC 
automotive/industrial benchmark suite using the basic 
block sampling and simulation technique, since a cycle-
accurate simulator could not be provided for all of those 
microarchitectures. Our simulation approach is simple 
and  fast, through combining two relatively complicated 
techniques, the statistical simulation [8] and reduced 
sampling [9]. The simulation results are used to measure 
the relative performance of the nine enhanced 
microarchitectures over that of the base 3-pipeline 
microarchitecture, instead of representing the actual 
performance of each microarchitecture. 

In order to provide visual verification of the correct 
simulation of each microarchitecture, the basic block 
simulation approach extends the method in [10] and 
generates a graph representing the issuing results of each 
basic block. Experimental results show that a partial IP 
pipeline can provide performance results up to that 
generated by duplicating the full IP pipeline as well as a 
range of design space cost/performance tradeoffs . 
 
2. Research methodology 
 
2.1. Computing the weighted execution 
probability 
of an instruction 
 

In our study, the whole of the EEMBC 
automotive/industrial benchmark suite was regarded as 
the aggregate workload and each benchmark was a part 
of it [11]. The overall execution probability of an 
instruction is computed as the total number of times that 
the instruction is executed, i.e. the total number of 
occurances in the trace file, over the total number of 
times of all instructions executed in all the benchmarks, 
based on TriCore 2.0 simulation results. 

Let OverallPi be the overall execution probability of 
the    i-th instruction of the whole instruction set and Tij 
be the total number of execution times of the i-th 
instruction in the j-th benchmark of the benchmark suite, 
OverallPi can be computed with the following equation: 
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where ‘16’ represents the total sixteen benchmarks of 

the EEMBC automotive/industrial benchmark suite and 
‘m’ represents the total instruction numbers in the 
TriCore 2.0 instruction set. 

2.2. Computing the performance of the 
microarchitectures 

 
We use the overall weighted arithmetic mean (WAM), 

of the instructions per cycle (IPC) for the whole EEMBC 
automotive/industrial benchmark suite to represent the 
performance of each microarchitecture, based on [11]. 
The weight of each benchmark is based on its execution 
cycles over that of the whole benchmark suite.  

Let j represent the j-th benchmark of the EEMBC 
automotive/industrial benchmark suite, overall WAM of 
IPC of a microarchitecture is computed with the 
following formula, based on the proof in [11]: 
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where Ij and Cj respectively represent the total 

instruction count and the total execution cycles of the   j-
th benchmark. 

The speedup is used to represent the relative 
performance factor of the standard and enhanced 4-
pipeline microarchitectures over the 3-pipeline base 
microarchitecture. It is computed with the following 
formula, based on [1]. 
 

)(
)(

baseWAMofIPC
enhancedWAMofIPCSpeedup =      (3) 

 
2.3. The overall research flow 
 

Figure 1 displays the overall flow of the partial IP 
pipeline generation and the performance analysis process 
in our study, which consists of three stages. In Figure 1, 
each stage is represented by a rectangle with a dashed 
line, in which the main operation is represented by the 
rectangle with a solid line. The thin arrowed line 
represents the output of one operation being input into 
another operation pointed to by the arrow. The large 
dashed arrow and the large solid arrow represent the 
input and the output of the three stages, respectively. 
Figure 1 shows that some of the outputs of Stages 1 and 2 
are inputs into Stage 3. 

Figure 1 shows that in Stage 1 the EEMBC 
benchmarks, after being compiled and linked into the 
assembly list file, are input into the TriCore 2.0 simulator 
to perform the ‘Instruction set simulation’ operation. The 
operation generates a trace file for each benchmark, 
which includes the execution frequency of each 
instruction and basic block. Then the ‘Instruction 
execution trace profiling’ operation processes the trace 
file and outputs instruction execution statistics, through 
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Figure 1. The process of partial pipeline generation and performance analysis with the reconfigurable block code simulation tool 

 
analyzing the body of the benchmark and excluding 
initialization and other housekeeping code. 

Stage 1 outputs the instruction execution statistics in 
two parts. The first part consists of sampled blocks of 
instruction code, which are basic blocks of TriCore 2.0 
instructions executed at least once in the execution trace, 
together with their execution frequencies. This part is fed 
into Stage 3 for the simulation of various 
microarchitectures.  

The second part comprises of the overall execution 
probabilities of all instructions, which are computed 
based on the equation (1) and are used to select IP 
instructions with the highest execution probabilities. 
Those selected IP instructions are divided into eight 
groups for different partial IP pipelines, in order to 
explore the design space for different silicon costs. Those 
partial IP pipelines are late input into Stage 2. 

Figure 1 shows that in Stage 2, the first operation, 
‘Base microprocessor modeling’ models TriCore 2.0 and 
outputs the 3-pipeline base microarchitecture model with 
the IP, LS and LP pipelines. Since TriCore 2.0 supports 
an optional floating point unit (FPU) with a coprocessor 
interfacing in the IP pipeline, FPU instructions are issued 
to the IP pipeline in the model. Since our research 
method does not require the support of special pipeline 
stage structures, we do not model stage details of those 
pipelines. The memory and branch characteristics of 
TriCore 2.0 are not modeled, which does not affect the 
generality of our research method on measuring the 
relative performance improvements of enhanced 
microarchitectures. 

The ‘Duplicating the IP pipeline’ operation duplicates 
the IP pipeline of the 3-pipeline base microarchitecture 
model and outputs the standard 4-pipeline 
microarchitecture model. In Stage 2, the ‘Adding partial 

IP pipeline’ operation takes a set of partial IP pipelines 
output from Stage 1, adds them into the 3-pipeline base 
microarchitecture model and outputs a set of special 4-
pipeline microarchitecture models, with the ‘special’ 
expressing a partial IP pipeline in them. The partial IP 
pipeline has the same pipeline stages as a full IP pipeline. 

Figure 1 shows that in Stage 3, the ‘Reconfigurable 
block 
code simulation’ takes as the input the sampled blocks of 
code, output from Stage 1, and the microarchitecture 
configurations, output from Stage 2, to simulate 
individual microarchitectures. It simulates the execution 
of each basic block and generates the graph representing 
the instruction issuing result for each microarchitecture. 
The execution cycle count of each basic block is 
generated and multiplied with the block execution 
frequency to report the total number of execution cycles 
in a benchmark.  

After that, the overall WAM of IPC, the overall 
performance of a microarchitecture, is computed based 
on equation (2). The speedups of the enhanced 
microarchitectures are determined based on equation (3) 
and compared to show the relative performance 
improvement of adding the partial IP pipeline. 
 
3. Experimental results 
 
3.1. Overall instruction execution probability 
results and the partial IP pipeline design 
 

Table 1 lists IP instructions with the overall execution 
probability of at least 0.02%, in descending order in the 
column ‘Freq.’. In the TriCore 2.0 ISA, some instructions 
have both 16 bit version, represented by appending ‘16’ 
to the end of the opcode, e.g. ‘add16’ in Table 1, and 32 
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bit version without appending of ‘16’, e.g. ‘add’ in Table 
1. In Table 1, the execution probability of an opcode 
appended with ‘(16)’, e.g. ‘add (16)’ represents the sum 
of the probabilities of both versions, and that of a bare 
opcode represents the probability of its 32 bit version 
only.  

 
Table 1:  IP instructions with high execution probabilities   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Other IP instructions with smaller execution 

probabilities are not included in Table 1 and will not be 
considered in the partial IP pipeline design, since they do 
not contribute much to the overall performance 
improvement. However, the original IP pipeline of the 
base microarchitecture can still execute those 
instructions.  

In Table 1, instructions selected to be duplicated in the 
partial IP pipeline are assigned with one or two group 
names for two types of partial IP pipelines, which 
represents the second part output of Stage 1 in Figure 1. 
In Table 1, instructions of group A to D in the column 
‘Group (without mul/div operations)’ are the partial IP 
pipelines without the multiplier and divider implemented.  

Instructions of group E to H in the column ‘Group 
(with mul/div operations)’ are the partial IP pipelines 
with the multiplier and divider. We design these two 
types of partial IP pipelines in order to explore the 
relative performance gains of the multiplier and divider 
and evaluate architectural design decisions.  

Opcode Operation type Freq.

Group(without 
mul/div 

operations)

Group(with 
mul/div 

operations)
add (16) addition 7.70% A E
sha (16) arithmetic shift 6.50% A E

jlt cond. jump 2.37%
mul (16) multiplication 2.12% E
sub (16) subtraction 2.05% A E

madd multiply add 1.34% E
msub multiply sub 0.99% E

Table 2 lists all ten microarchitectures in our study 
with the number of each type of the pipeline, which 
represents the output of Stage 2 in Figure 1. Table 2 also 
illustrates the groups of IP instructions, defined in the 
Table 1, that each of the eight partial IP pipelines can 
execute. In those groups, when one instruction has 16 bit 
and 32 bit versions, both versions of the instruction are 
included.  
 

Table 2. Microarchitectures in our study 
 
 
 
 
 
 
 
 
 
  
 
 
      

 
For each microarchitecture in Table 2, instructions are 

issued out of order, and the maximum width of the issue 
packet is equal to the maximum issue width [1]. When a 
loop instruction is within the packet, the maximum issue 
width is the same as the total number of pipelines. When 
the packet does not have a loop instruction, the maximum 
issue width is one less than the total number of pipelines. 
[see note A at the end of the paper] All instructions are 
assumed to have one cycle latency, and their operation 
results are readily available in the next cycle through data 
forwarding.  

 
 3.2. Graphical representation of the 
instruction issuing results 

Architecture 
name

Full    IP 
pipeline

Full    LS 
pipeline

Full    
LP    

pipeline

Partial 
IP 

pipeline

Group of 
instructions 
for partial IP

4-pipeline (A) 1 1 1 1 A
4-pipeline (B) 1 1 1 1 A, B
4-pipeline (C) 1 1 1 1 A, B, C
4-pipeline (D) 1 1 1 1 A, B, C, D
4-pipeline (E) 1 1 1 1 E
4-pipeline (F) 1 1 1 1 E, F
4-pipeline (G) 1 1 1 1 E, F, G
4-pipeline (H) 1 1 1 1 E, F, G, H

3-pipeline     
(base) 1 1 1
pipeline 2 1 14-

mov (16) move 0.95% B F
jz (16) jump if zero 0.84%
jne (16) cond. jump 0.51%

dextr extract data 0.43% B F
sh (16) shift 0.39% B F

jge cond. jump 0.39%
jz.t (16) cond. jump 0.38%
lt (16) compare data 0.35% B F
insert insert bit 0.27% C G
or (16) logic or 0.23% C G

sel select data 0.19% C G
and (16) logic and 0.18% C G
jeq (16) cond. jump 0.14%

b (16) reverse subtract 0.12% C G
movh move data 0.12% C G

jnz (16) cond. jump 0.10%
extr.u extract bits 0.09% C G
subc subtract+carry 0.09% C G
subx subtract extended 0.09% C G
addc add+carry 0.07% C G
mul.u multiply unsign 0.07%
dvstep divide step 0.06% H
andn.t

rsu

bit and-not 0.05% D H
addx add extend 0.04% D H

and.eq equal accumulate 0.04% D H
jlez (16) cond. jump 0.04%

xor.t bit xor 0.04% D H
addi add immediate 0.04% D H

eq (16) equal 0.03% D H
clz count lead zero 0.03% D H

nz.t (16) cond. jump 0.03%
ge greater/equal 0.02% D H

mov.u move unsign 0.02% D H
t.u less than unsign 0.02% D H

j

l

14
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Figure 2. Graphs representing the issuing results of the block ‘120_001’ of the EEMBC benchmark ‘aifftr01’ for four different microarchitectures 

 
In our research, the ‘Reconfigurable block code 

simulation’ of Stage 3 in Figure 1 can generate a graph 
that represents the instruction issuing results of the basic 
block under each microarchitecture. As an example, 
Figure 2 includes four subfigures with a graph 
representing the instruction issuing results of the block 
‘120_001’ of the EEMBC benchmark ‘aifftr01’ for one 
specific microarchitecture. In each subfigure, each node 
of the graph represents an instruction, in which the first 
three digits represent its position in the original program 
sequence, followed by opcode and operands. The opcode 
followed by ‘16’ indicates a 16 bit instruction. Otherwise 
it is a 32 bit instruction. Each arc connects two 
instruction nodes with a true data dependency [1]. The 
instruction node at the vertically low end of the arc is a 
child instruction and has the true data dependency on the 
parent instruction at the high end of the arc. 

In Figure 2, each graph in the subfigure also 
represents the relative timing of the instruction issuing. 
Instruction nodes aligned at the same horizontal level are 
issued on the same cycle and the issuing cycle time is 
ordered at the left side of the graph. Subfigures 2.c and 
2.d show that the 4-pipeline (A) and 4-pipeline (B) 
microarchitectures take three and two cycles to execute 
the block ‘120_001’, respectively. This is because the 
partial IP pipeline in the 4-pipeline (B) microarchitecture 
can execute more instruction than that in the 4-pipeline 
(A). 

Subfigure 2.b and 2.d show that both the 4-pipeline 
and 4-pipeline (B) microarchitectures take two cycles. In 
this case, the added partial IP pipeline of the 4-pipeline 
(B)  microarchitecture can perform the same as the 
duplicated full IP pipeline of the 4-pipeline 
microarchitecture. 
 

3.3. Overall performance results and 
discussions 
   

Figure 3 displays the performance of all 
microarchitectures in the overall WAM of IPC, and the 
speedup of the enhanced microarchitectures with the 
empty square and solid diamond notations, respectively. 
The speedup is represented as percentage to one decimal 
place. We explore the design space of the partial IP 
pipeline by comparing the performance improvements 
with that achieved by the duplicated full IP pipeline. 

Performance of microarchitectures 
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Figure 3. The overall performance results of all microarchitectures in  
  our study   
 

Figure 3 shows that the 4-pipeline (H) and the 4-
pipeline microarchitectures achieve the same speedup of 
113.6% after the rounding up. This indicates that adding 
a partial pipeline could achieve the performance 
improvement similar to duplicating a full pipeline. 

Figure 3 also shows that the 4-pipeline (D) 
microarchitecture, with the best of the four partial IP 
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pipelines without implementing the multiplication and 
duplication operations, achieves 112.1% speedup. It 
achieves only 1.5% less speedup than the 4-pipeline (H) 
microarchitecture. When the hardware implementation 
cost of the multiplication and division operations in the 
partial IP pipeline of the 4-pipeline (H) microarchitecture 
are taken into account, the 4-pipeline (D) 
microarchitecture could also be a design choice under a 
stringent cost budget.  

Under a more stringent cost budget, the 4-pipeline (A) 
version, implementing three instructions in the partial IP 
pipeline, could also be a design choice. It achieves only 
1.2% less speedup than the 4-pipeline (D) 
Microarchitecture, while it implements seventeen 
instructions less. One reason of the small speedup 
differences between those two microarchitectures could 
be that the instructions executable in the partial IP 
pipeline of the 4-pipeline (A) and (D) microarchitectures 
respectively achieve 16.25% and 19.95% execution 
probabilities. 

In our study, one set of EEMBC benchmark assembly 
code is used for the simulation of all microarchitectures. 
It was compiled with some optimisations specifically 
targeted at the performance of the 3-pipeline base 
microarchitecture, which is out of our control. We were 
unable to optimise the code for the performance of the 
standard 4-pipeline and the special 4-pipeline 
microarchitectures. When the set of the assembly code 
could receive similar optimisations for those enhanced 
microarchitectures, they could potentially achieve better 
performance results than reported in the paper. However 
it does not affect our research methods as presented. 
 
4. Conclusion and future works 
 

In this paper, we have presented a customized 
approach, in three stages, of designing an additional 
partial IP pipeline and adding it to the base embedded 
superscalar microprocessor to improve its performance. 
We developed the 3-pipeline base microprocessor model 
based on TriCore 2.0 32 bit MCU/DSP core. Eight partial 
IP pipelines were designed and added respectively to the 
base microarchitecture to form eight special 4-pipeline 
microarchitectures. The standard 4-pipeline 
microarchitecture was constructed by duplicating the full 
IP pipeline of the base microarchitecture. We used the 
basic block sampling and simulation approach to 
simulate the performance of those microarchitectures. 

Our experimental results show that adding the extra 
partial IP pipeline to the base architecture can achieve 
cost effective performance improvements, close to that of 
duplicating the full IP pipeline. Performance results of 
the partial IP pipeline also pose more choices of the 
cost/performance tradeoffs compared with conventional 
pipeline duplication for the general purpose 

microprocessor. Our approach, as presented, can be 
generally applied to embedded systems and general 
purpose microprocessors as well. 

This paper can conclude that it is possible to add the 
partial pipeline to the base microprocessor for the SoC 
embedded system to achieve better cost effective 
performance improvements. Based on different levels of 
the cost constraints and silicon area vs. performance 
tradeoffs, different partial pipelines can be added. 

As part of future work, it would be interesting to study 
the relative performance improvements of enhanced 
microarchitectures with the real TriCore 2.0 instruction 
latency. Future work could also focus on the choice of 
the subset of IP instructions for the partial IP pipeline, by 
using the different compiler to generate the benchmark 
suite assembly code, so the instruction subset of the 
partial IP pipelines as presented could be confirmed. 
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Transcript from the discussion

Comment; references to speedup of 112% etc should really read as 12% speedup, looking at definition
for speedup (3)

Q(AS): any other architectures using this already?
A: I do not know, not sure why, but I suspect that one reason is.. that we assume one cycle per
instruction.
Q(AS): What is the effect of adding pipeline to the control unit, does it affect chip dye? It seems that with
the partial pipeline it takes more logic to schedule the instructions, and the trend has been that control
units have grown.
A: We have not looked looked into this yet. But compared with the control unit needed in dies with an
additional pipeline, the partial pipeline should save some space. Because it needs to consider less
instructions.

Q(ES): Did you do some real measurements on how good the simulation fits to reality?
A: We did some, but the company involved could not disclose certain results.
After this is developed with real instruction latencies, then we can compare our results.

Q (AS): Concerning page 3, first column: "The memory and branch characteristics of the TriCore 2.0 are
not modeled, which does not affect the generality.." : With this in mind, what kind of penalty is expected
when branches occur, in this extra partial pipeline version.
A: We did not consider the branch prediction penalties.
But performance could be worse, because more instructions could be in pipeline, compared to not having
an extra pipeline.
Q (AS): Do you have access to any Cycle accurate simulator?
A: Yes, at infineon I had access to this.

Q (Ian): Explain the speedup, upper graph (Fig 3)
A: The curve represents the absolute performance of each architecture.
It shows the WAMofIPC of enhanced architectures compared vs the baseline 3-pipeline architecture.

ES: How relevant are benchmarks to other applications, e.g. DECOS, with respect to i.e. WCET?
A: The EEMBC automotive/industrial embedded microprocessor benchmark suite has several
benchmarks that are special to the application, e.g. speed of wheels in a car.
Not sure about application of other benchmarks to DECOS application.

Q: What about dependencies in dye used for particular instructions? I.e. by taking away an instruction will
it affect other instructions?
A: I have no quantitative answer to that.
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Abstract

Stack processors offer a level of code density un-
rivalled by that of register file-based architectures.
This asset can be attributed directly to the fact
that operands are addressed implicitly in stack pro-
grams. However, this implicit addressing also en-
forces a serial execution model in the program and
the full impact of this constraint is only realised
when an attempt is made at building superscalar
implementations of a stack processor. This paper
introduces a new architectural paradigm that tries
to alleviate the impact of this constraint whilst re-
taining much of the code compactness of stack pro-
cessors.

1 Introduction

Superscalar processors use dynamic scheduling
to increase throughput by attempting to uncover
independent instructions for execution every clock
cycle. This out-of-order scheduling of instructions
enables the processor to hide latencies of long
running operations (e.g. multiply, load etc) and/or
utilise functional units more efficiently[1]. The
number of instructions considered by the processor
for out-of-order issue is known as the scheduling
window and larger windows increase the likelihood
of the processor succeeding in finding independent
instructions. However, increasing the size of the
window also increases the hardware requirements
of the processor.

Every instruction in the window compares its own

operand fields against those of its predecessors in
order to uncover any potential hazards. For ex-
ample, if an instruction j shares the same des-
tination field as a preceding instruction i, then
issuing j ahead of i would introduce a write-
after-write(WAW) or write-after-read(WAR) haz-
ard. The number of comparators required for this
purpose can be calculated using the following for-
mula:

2(n− 1)+2(n− 2)+2(n− 3)+ ....+4+2 = n
2
−n

In reality, the number of comparators required
would not be as high as this because the processor
only considers a subset of the scheduling window
in any given cycle. However, the size of the
scheduling window may have a direct impact on
the cycle time (if the instruction scheduler lies in
the critical path)[2]. Then deciding upon the size
of the can become a trade-off between reducing
cycle time and reducing CPI. Furthermore, the
complexity of the scheduling logic makes it ac-
countable for significant percentage of a processor’s
power budget[3].

Compilers can help alleviate the detrimental effects
of reducing window size by scheduling code stati-
cally; compile time scheduling effectively extends
the look-ahead capability of the processor. Unfor-
tunately, stack code is not amenable to schedul-
ing at compile time (due to the manner by which
operands are addressed implicitly). However, the
architectural techniques about to be introduced will
improve the scheduling potential of stack code by
exploiting certain properties intrinsic to stack ma-
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Figure 1: The state of memory (i)before and
(ii)after executing the operation C = A + B

chines. It will be shown that these techniques can
enable the compiler to schedule stack code in much
the same way that register file-based code is sched-
uled. Furthermore, these techniques will permit
optimisations that are not feasible in register file-
based code.

2 Preliminaries

All operations are performed on the stack in a stack
processor. The top two elements of the stack com-
prise the source operands 1and the result is written
back to the top of the stack, by default. All reads
are destructive so the result of an operation would
overwrite one of its own source operands (see fig-
ure 1). Sometimes stack operands need to be re-
arranged so that they appear in the correct order.
This can be achieved by executing swap and/or ro-
tate instructions [4].

3 Partially implicit stack ad-

dressing

In the canonical stack model, all instructions
consume the top two operands on the stack.
However, this is a rather superficial observation
about the properties of the stack. In reality, the
source operands of an instruction are the operands
residing at the instruction’s destination address
and the cell above it. For example, if the desti-
nation address of a particular instruction’s result
is 0X00FC3E08 then the first and second source
operands can be found at addresses 0X00FC3E04

1These entries are commonly referred to as the top-of-
stack (TOS) and next-on-stack (NOS) entries.

and 0X00FC3E08, respectively. Thus, by specify-
ing the destination address alone, the processor
has enough information to be able to execute the
instruction.

Specifying the destination address in this way
enables the compiler to reorder instructions with-
out changing program semantics (c.f. RISC).
However, specifying a 32 bit address within every
instruction is impractical as it will significantly
increase code size. Instead, it is better to specify
the destination address as an offset relative to some
pointer; the stack pointer is a suitable candidate
for this purpose. If the stack pointer points to
the first free cell then the processor can calculate
the destination address by adding the offset to
the current value of the stack pointer. Figure 2
illustrates this.

The processor is required to keep track of the
value of the stack pointer after every instruction
execution. Furthermore, the offset should be a 2’s
complement number because the stack can shrink
as well as grow. Thus, a 5 bit address field can
provide an offset ranging from -16 to +15. Any
processor supporting this form of addressing will
be said to implement the partially implicit stack
addressing(PISA) architectural paradigm. The
PISA paradigm does not rule out the possibility
of supporting a dynamic instruction scheduler.
Instead, the two techniques could be used in
concert to reduce the complexity of the scheduler.
Alternatively, the architecture could be used in
combination with a VLIW approach.
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Figure 2: The ADD instruction will write its result
to address (0X00F312EC + 8 =) 0X00F312F4 and
consume D and X during execution.
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Figure 3: (i) DIV writes its result to address 0x00124802 so the register-renaming table queues the
register mapping in the corresponding entry (ii) ADD writes its result to the same address so its mapping
is queued at the same entry (iii) The first instruction to try to read the operand at this address will
be redirected to the physical register holding the result of DIV (i.e. PR12) before this mapping is
deleted from the renaming table. The next instruction to try to read the operand at this address will be
re-directed to the physical register holding the result of the ADD (i.e. PR8).

Partially implicit addressing alone only permits
overlapping the execution of instructions that write
their results to different locations on the stack.
This can be prohibitive as stack locations are of-
ten reused. However, the next section introduces a
technique that circumvents this impediment.

4 Further enhancing static

scheduling

Consider executing the following code sequence on
a register file-based machine:

DIV R1, R2, R5

ADD R6, R4, R1

SUB R1, R12, R13

The compiler would like to schedule the SUB
ahead of the ADD in order to hide some of the
latency of the DIV instruction. However, if the
compiler tries to do this then the ADD will get the
wrong value for R1 (i.e. a RAW hazard will result).
This is because the result of the SUB instruction
will overwrite the result of the DIV instruction.
However, operands cannot get overwritten in a
stack machine but instead, are destroyed upon
being read. The compiler can improve static

scheduling by exploiting this property.

In order for the compiler to be able to issue the
SUB ahead of the ADD, the processor must provide
some hardware mechanism that will enable the
result of the DIV instruction to persist after the
ADD has been executed. A register renaming table
constructed from a set of first in, first out (FIFO)
structures will perform this function. Figure 3
illustrates the operation of this mechanism.

The size of the FIFOs will dictate the degree to
which the compiler can reorder instructions. Note
that this mechanism is not invisible to the compiler
and, therefore, this size cannot be reduced in future
implementations of a particular instruction set ar-
chitecture if backward compatibility is an issue.

5 Evaluation

The PISA architecture greatly enhances the
ability of the compiler to schedule instructions
over the canonical stack model. It also permits
optimisations that are not feasible in register-file
based machines. However, PISA-based code will
be greater in size than stack-based code. This may
result in poorer cache performance, though this
performance should still be better than in a RISC
machine.

3
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The task of compiling code for the PISA archi-
tecture is more arduous than in the case of either
the RISC or canonical stack machines. In order
to compile code for a PISA machine, the compiler
must first reduce the code into a format suitable
for execution on a stack processor. Subsequently,
the compiler must compute the destination ad-
dresses of each and every operation before finally
scheduling any delays. This is clearly unsuitable
in cases where fast compile time is a requirement.

In reality, the performance of the PISA archi-
tecture depends greatly on the amount of paral-
lelism statically available in the program being ex-
ecuted. For programs with frequent branches, this
figure can be quite small. However, for programs
with infrequent branches, the amount of paral-
lelism available can be quite significant (conditional
branches constitute only 1% of the instruction mix
in the EEMBC consumer benchmark for the TM32
CPU[5]). When coupled with the code density of
stack machines, the performance of the PISA ar-
chitecture would be unparalleled in such cases.

6 Conclusion

The PISA architecture enhances the ability of the
compiler to schedule code statically and, conse-
quently, reduces hardware requirements. However,
this improvement comes at the expense of increased
compilation time and reduced cache performance.
A future study would be able to evaluate the per-
formance of the PISA architecture in relation to
the stack and RISC architectures supporting both
dynamic scheduling and VLIW approaches.
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Transcript from the discussion

Q (ES): what is new?
A: stack architecture
Ø. Teig comments that a similar architecture has
been used in transputers
stack machine for pascal?
AS: knowledge of any machine
know of some machine by Jack(?) Moore
AS: could this work be used to also improve the
java machine?
yes, think so..
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Abstract

Specification and testing activities are key phases in
embedded systems development life cycles. In
specification-based testing approaches, test cases are 
solely generated from the system specification. Test cases
are often too numerous to be executed exhaustively. In
practice, test engineers often select test cases based on
informal approximations. We aim at improving these 
activities by formulating abstraction hypotheses on
system specifications, to reduce generated test sets. Our
general application framework is the automotive industry,
and we aim the specific domain of small-sized real-time 
embedded systems that must be highly reliable. The main
result presented in this paper is a model transformation
language that helps test engineers to select test cases
based on system specifications.

1. Introduction
Nowadays, embedded systems are everywhere, from

washing machines to cars, trains, and planes, etc. The 
approach in this paper aims small-size embedded systems
that have a restricted computation capacity as well as
storage capacity, typically, electronic control units (ECU)
present in cars. For instance, responsible for airbag
deployment, car breaking (ABS), etc.

System specification activities (among other activities
of the system development life cycle) are human
activities. As such they are error-prone, that is why
verification activities are necessary in the development
process. Verification activities are classically divided in
two categories, dynamic verification (test), and static 
verification (analysis). In our study, we are interested in
the dynamic verification of systems based on their
specifications; commonly called specification-based
testing [Richardson89] (or conformance testing). During
this phase, system's specifications are used as a reference 
to verify the implemented system, and test cases are 
exclusively derived from the specification of the system

under development. For many industrials, which
subcontract system implementation activities to external
companies, these tests are the only kind of tests that can
be accomplished. Thus are of particular importance. One 
of the advantages resulting from specification-based
testing is that test cases are created earlier in the 
development process, thus will be ready for execution
before the end of the system's implementation. Moreover,
when test cases are generated earlier, test engineers may
find inconsistencies and ambiguity in the specifications,
either by automatic analysis, or by informal inspection of
the generated test cases, which allow improving the 
system's specification before it is finished.

Several modeling languages may be used to specify
behavior of reactive systems [Harel85], we choose the 
statecharts’ language [Harel87], because it has been
formally defined [Harel96, Damm98], and is well spread
in the industry (STATEMATE is a lodestar-tool of
systems' behavior specifications in the automobile 
industry). In this paper, we focus on the behavioral
specification of the embedded software.

Testing is a critical activity of systems development life 
cycle. As such, it must be performed confidently.
Selection and generation of test cases are crucial activities
of specification-based testing. Thus, it is important to
have methodologies allowing systematic derivation of test
cases from specification models. When performing tests
based on specifications, generated test cases are 
frequently too numerous to be completely executed often
due to a lack of time. Consequently it is needed to select
what test cases to be performed to keep a reasonable test
execution time. Practically, test cases selection is usually
performed based on informal approximations.

In this paper, we define a model transformation
language that reduces systems specifications. This
simplification step is meant to be combined with
automatic test case generation techniques [Gnesi04] in
order to, reduce the number of test cases generated, and
perform the activity of test cases selection in a systematic 
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way. The main advantages of our approach are (a) the 
specification of the system is the main artifact to decide 
for further test activities; (b) reduced specifications are 
specifications of the tests effectively performed; (c)
reduced specifications describe a subset of the system’s
functionalities to be tested.

In Section 2, we present our approach to the reduction
of statecharts in the context of specification-based testing
activities. We present the syntax and semantics of our
statechart model in Section 3. We define the 
transformation language that allows characterizing
abstraction rules on statecharts in Section 4. Section 5
gives a short description of our prototype implementation
of our transformation language, which is integrated in the 
MagicDraw UML CASE tool.

2. Approach
The approach that we suggest is based on model

transformation languages [Heckel00]. It offers applying
abstraction rules on systems specifications in order to
generate reduced specifications. These reduced
specifications are used as input for test cases generation
techniques, resulting in a smaller amount of test cases (i.e.
a reduced test set) to perform.

Concretely, our approach will be composed of a model
and a model transformation language. The model is based
on statecharts and used for the specification of small
embedded systems. The model transformation language is
used for the reduction of specifications (written with the 
aforementioned model). The syntax and semantics of our
model of specifications and our specifications
transformation language being formally defined, our
approach permits the verification of specification
reductions, both on the syntax and semantics.

Our approach is illustrated by Figure 1 which shows a 
reduction (illustrated by reduce(sc1)) of a system’s
specification written with RTSL statecharts, named sc1,
in order to generate (specTestGen(sc2)) a reduced
test set, named ts2, from reduced statecharts sc2. The 
semantics of the statechart before transformation is
sem(sc1) and after transformation is sem(sc2). One 
of the important issues to address in our approach is to
know to what extent there is an equivalence between the 
different paths of the figure going from sc1 to ts2. For
instance, how are the two following paths
specTestGen(reduce(sc1)) and
reduce(specTestGen(sc1)) linked ? Are they
similar, if yes to what extent? Another question that we 
are asking ourselves is whether the reduction of the 
semantics of the statechart sc1 (reduce(sem(sc1)))
is coherent with the semantics of reduced statechart sc2
(sem(reduce(sc1))) ? In this paper, we will not
address these issues, but we think that it is fundamental to
keep in mind the impact of the reductions of

specifications with respect to their semantics in order to
define properly the model transformation language. In
this paper, we focus on the reduction of statecharts (arrow
reduce(sc1)) and we also tackle the semantics links
between RTSL statecharts and IOLTS. For test case 
generation and test execution, we refer the reader to
existing approaches, as for instance, Gnesi et al.
[Gnesi04], or Tretmans [Tretmans99].

The major contribution of this paper is the definition of
a statechart transformation language based on abstraction
rules. These transformations aim at reducing systems’
specifications, so that the generated test cases from these 
reduced specifications are also reduced.

Numerous reduction approaches exist, but few are 
specifically oriented to visual models, most of them
targeting textual specifications. Based on the study of
Prenninger et al. [Prenninger04] we suggest a 
categorization of abstractions, applicable to the reduction
of tests based on specifications that contain 5 categories:
• Functional abstraction: the aim of a functional

abstraction is to focus on a precise system's
functionality to verify. The application of this kind of
abstraction lies on the fact that the system under test is
not going to behave entirely the same way, but will
only preserve the significant chosen aspects.

• Structural abstraction: the abstraction of syntactical
elements of the specification models.

• Data abstraction: the idea behind data abstraction is
to link concrete data types to abstract data types. For
instance, to reduce the size of the representation or to
reduce the data complexity.

• Communication abstractions aim to abstract complex
communications into less complex communication.
For example, a complex communication may be an
interaction with a number of messages exchanged that

Figure 2 - Overview: Specification, Semantics and Test

RTSL

sc1 sc2
reduce(sc1)

sem(sc1)

sem(sc2)

IOLTS

lts1
lts2reduce(lts1)
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TestSet

ts1 ts2
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semTestGen(lts1)

semTestGen(lts2)
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could be abstracted in a unique message starting and
ending at the same location.

• Temporal abstractions are based on the idea that only
the sequence of events/actions is pertinent; i.e. the 
precise times when events appear are not taken into
account. These temporal abstractions may be used to
modify the granularity of time. For example, a system
may have clock cycles of 10ms, but we could wish to
abstract time, in the way that clock cycles will remain
unchanged but we will take snapshots of the system
every second.

3. Prototype of RTSL: a Real-Time
Statechart Language

Due to the proliferation of statechart variants
[Beeck94], it is necessary to choose which statechart
variant to use (Harel [Harel87], STATEMATE [Harel96],
UML [OMG04], or other variants), and possibly adapt it
to our specific needs. Thus, one of the results of our study
is the definition of a model of statecharts, which we name 
RTSL, which fits to the further definition of our
statecharts transformation language.

Most of the existing variants of statecharts give in
details their semantics, but few linger on the precise 
description of the abstract syntax and the related syntactic 
properties. In our work, the precise description of the 
abstract syntax of RTSL statechart is paramount, as we 
describe the semantics of our transformation language at
the level of the abstract syntax of RTSL statecharts.

In this paper, we only focus on basic concepts of
statecharts that we think are fundamental to the definition
of our transformation language (states, transitions, events,
actions, hierarchy, and concurrence), and we give only a 
prototype of the Real-Time Statechart Language, which
does not support time-related concepts, because we think
that the basic concepts cited above are sufficient, in a first
step, to establish a proof of concept of our approach, i.e.
these concepts are sufficient to define a first version of
our transformation language.

The description of the abstract syntax of statecharts, as
given by Jansen [Jansen02], is adapted to our needs; we 
complete it by describing the informal properties of
Jansen with logical formula, and we restrict this syntax by
not taking into account guards on transitions.

The semantics of RTSL statecharts is given as Gnesi et
al. [Gnesi04], i.e. we give RTSL statecharts semantics as
input/output labeled transitions systems (IOLTS). To
achieve it, we provide an algorithm [Ries05] that
transforms RTSL statecharts into IOLTS.

Our model of statecharts RTSL is constituted of the set
of statecharts SC compliant with the formalization, we 
give in the following, an extract of the formalization.

A statechart i, noted sci, is a 7-uplet
sci = (Si, Ei, Ai, Ti, subi, defaulti, typei)

Where Si is a finite non-empty set of states, containing
at least the root state, noted rooti. Ei and Ai, are finite sets
of events and actions characterized by their names.

Ti ⊆ Si × (Ei ∪ ε) × (Ai ∪ ε) × Si is the transition
relation. Informally, for a transition (s, e, a, s') ∈ Ti: s is
the source state, e is the event that enables the transition,
a is the action performed when the transition is taken, and
s' is the target state of the transition.

The refinement function subi ⊆ Si → P(Si) associates to
a state its direct substates, it is restricted not to contain
cycles, and that each state owns a unique direct super-
state (forming a hierarchy).

Function typei: Si → {OR, AND, BASIC} associates to
each state its type. Function defaulti: Si Si is a partial
function which associates to every OR-state exactly one 
of its direct substates, which is its default state.

We define an accessibility relation between two states at
the syntax level, which will be of great interest for the 
formalization of our transformation language. It allows us
to ignore all inaccessible states from the root state. It is
important to differentiate this accessibility relation at the 
syntax level from accessibility relations defined at the 
semantics level.

Equation 3 - Syntactical States Accessibility Relation of RTSL Statecharts
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In this paper, we define the accessibility by simple 
deduction of the order and hierarchy of syntactical
elements of statecharts. This relation is formally
described by assertion of Equation 3.

Let : Si × (Ei × Ai)* × Si be an accessibility relation
between two states through a finite sequence of
events/actions couples, formally defined by the 6
assertions below. We note meaning that state s1

may be reached from state s0 with the sequence of
events/actions γ ∈ (Ei × Ai)*. Intuitively, this relation
represents two accessible states with a series of transitions
and/or hierarchical links.

4. SCTL: a StateChart Transformation
Language

The main contribution of this paper is the definition of
SCTL. SCTL is a language that offers transformations of
RTSL statecharts based on abstraction rules presented
shortly in Section 2. The following section only presents
in details a few transformations of SCTL; a technical
report [Ries05] gives its complete definition.

These transformations aim at reducing the specifications
written with RTSL statecharts. The transformations are to
be used by test engineers who chose the abstractions they
want to apply on the system specifications and then use 
the reduced specifications for test case generation that
will result in a reduced amount of test to perform.

Our approach is in line with the numerous work on
model transformations [Heckel00, Avgeriou04], initiated
by the recent MDA standard from OMG [OMG03] and,
more generally, by the existing model-based methods.
Results on model transformations come mainly from the 
domain of graph theory [Heckel00].

SCTL offers transformations based on structural and
functional abstractions rules. As variables are not taken in
account in the abstract syntax of RTSL, our SCTL does

not offer any transformation based on data abstractions.
Communication and temporal abstractions rules are also
not taken into account for the current definition of SCTL.
SCTL provides the 8 following transformations:
1. Transformation delUnreach deletes all inaccessible 

states from the root state. To preserve the coherence 
of the statechart, it also deletes transitions whose 
source state or target state has been deleted. It may be 
useful to apply delUnreach at the end of every
transformation or sequence of transformations.

2. Transformation exState extracts a given state of a 
statechart, i.e. after transformation, only the behavior
of the state, including its internal behavior is kept.
This transformation and the following abState take 
advantage of the hierarchical structure of statecharts.

3. Transformation abState abstracts the behavior of a 
given state of a statechart, i.e. after transformation,
internal behaviors of the state will be ignored.

4. Transformation delState deletes a state of a 
statechart.

5. Transformation modifDefault modifies a default
state of a statechart.

6. Transformation delTrans deletes a transition of a 
statechart.

7. Transformation startWith allows specifying which
state will be part of the initial states of the statechart.

8. Transformation ignoreEvt ignores a given event of
the statechart.

SCTL semantics We define an axiomatic semantics for
SCTL, thus the definition of each transformation is given
by an axiom. Equation 4.1 is the assertion that defines the 
abState transformation whose purpose is to abstract a 
given state of a statechart. The transformation can be 
applied to any state except the root state. All states are 
kept except for all the substates of the state to abstract.

Equation 4.1 – Axiom for abState Transformation
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Figure 4.2 - Transformation abState

All transitions are kept except for the strictly internal
transitions of the state to abstract, i.e. whose source and
target state are both substates of the state to abstract. The 
transitions, whose either source state or target state is a 
substate of the state to abstract, are modified so that the 
source state (resp. target state) is replaced by the state to
abstract. The state to abstract does not have any substate 
anymore, and thus becomes a basic state.

Figure 4.2 illustrates the application of an abState
transformation on state s1 of the left statechart; result of it
is the right statechart. The substates of state s1 are deleted,
which are the states of the following set: {s5, s6, s7, s8, s9},
as well as the three direct substates of state s1. The 
internal transition (s8, e24, e24, s6) is deleted. As well as the 
transition arriving (resp. leaving) to (resp. from) a 
substate of state s1: (s11, e2, e3, s7) (resp. (s9, e3, e4, s16))
now arrives (resp. leaves) directly to (resp. from) state s1.

Limitations It is important to notice that the resulting
RTSL statechart of this transformation may contain
behaviors that were not behaviors of the statechart before 
transformations. On Figure 4.3, for example, we can
establish that the following sequence of transitions <(s0,
e1, ε, s1) (s1, e3, ε, s2) (s2, e1, ε, s3)> is not a valid sequence 
of transition of the initial statechart sc3. This
transformation may thus introduce additional traces
(undesirable). It is important to be aware of consequences
on the semantics of statecharts traces due to
transformations. In order to test only original behaviors,
we should delete the undesirable behaviors. This can be 
done in two different ways:
• By asking the user to delete the test case 

corresponding to the undesirable traces.
• By automatic analysis of the generated test cases.
A solution not to introduce undesirable tests would be to
avoid using inter-level transitions, whose source and
target states do not have the same direct superstate.

s2

s21

s22

s1

s3

s0

e1/ .

e3/ . e2/e1.

e1/ .

e4/ .
e2/e1.

s2

s1

s3

s0

e3/ . e2/e1.

e4/ .

e2/e1.
e1/ .

e1/ .

Figure 4.3 - Transformation abState (limitations)

5. Prototype
SCTT stands for StateChart Transformation Tool. The 

goal of SCTT is to provide a concrete way of applying
SCTL transformations. In the context of this paper, the 
implementation of a prototype of SCTT aims at providing
a proof of concept of our approach. Figure 5.1 shows the 
prototype of SCTT integrated as a menu in the UML
MagicDraw modeling tool.

The design of the prototype of SCTT has been
facilitated by the precise formalization of the concepts of
RTSL and SCTL. Therefore, the design activity of SCTT
has been straightforward. Each SCTL transformation is
implemented as an object, and a RTSL statechart is an
object composed of 7 attributes (states, events, actions,
transitions, substates, types, defaults) corresponding to its
abstract syntax elements (S, E, A, T, sub, default, type).

Figure 5.1 – Screenshot of SCTT in MagicDraw

The prototype of SCTT is implemented in Java as a 
plugin for the UML modeling tool MagicDraw v9.5. The 
prototype consists of 13 Java classes, for an average total
of 2000 lines of code (including comments and diverse 
declarations), and has been developed with the Eclipse 
3.0 development platform. SCTT prototype offers the 
following features:
• Transform a statechart modeled in MagicDraw with

one of the 8 SCTL transformations.
• Print the description of the abstract syntax of the 

active state diagram, with the help of the Get Info
command

The small-sized embedded system chosen as a case study
for this paper is a system that allows deactivating the 
front passenger's airbag of cars depending on the presence 
of a front passenger, and the kind of passenger. This case 
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study is directly inspired from a real project from the 
automotive industry, and is voluntarily simplified in order
to concentrate on the interesting parts for our statecharts
transformation language. This embedded system aims at
warning the general electronic module (GEM) of cars
when the front passenger is a child seat (a child seated in
a child seat), a child (not seated in a child seat), or an
adult. The front passenger is the person seated next to the 
driver. The system does not care about the deployment of
the driver’s airbag. The system must also warn the GEM
when the front passenger's head is too close to the airbag.
Thanks to a 3D camera, this system classifies the 
passenger into different categories and measures the 
distance between the passenger's head and the airbag.
This system may be used in two different use modes, the 
service mode in which it performs passenger
classification and head detection, or the production mode 
in which the system sends diagnostics information.

Figure 5.2 shows the statechart that models the behavior
of this small-sized embedded system that has been
modeled with the UML tool MagicDraw, and that
consists of 20 states (of which 12 basic states, 1 AND-
state, 7 OR-states), 15 transitions, 12 events and 2
actions. Transformations realized in the context of this
work have all been performed with our prototype SCTT.

The applications of SCTL reductions help targeting the 
tests to be performed. Let's make the assumption that at a 
certain moment of the test phase, test engineers want to
focus on the test of the service mode of the system. The 
SCTL exState transformation can be applied on the 
serviceMode state. The application of the transformation
will result in a consistent statechart composed of the 
serviceMode state with a root state. Let’s take the four
following traces which are part of the possible system
executions before application of the aforementioned
transformation:

<(contactKeyInserted, ε) (enterProdMod, ε) (sendPassengerStatus, ε)>
<(contactKeyInserted, ε) (enterProdMod, ε) (sendDiagnostic, ε)>
<(contactKeyInserted, ε) (childSeatDetected, switchLightOff) >
<(contactKeyInserted, ε) (passengerNotinOFP, switchLightOff) >

After application of the transformation this subset of
possible execution is reduced to:

< (childSeatDetected, switchLightOff) >
< (passengerNotinOFP, switchLightOff) >

Another example of applications of SCTL
transformations may be that engineers just want to test the 
service mode but also want to test the switching on of the 
car contact. In this case they can apply delState on the 
state productionMode. Or they could also apply
ignoreEvt on the action enterProdMod, followed by
an application of delUnreach in order to delete 
unreachable state, i.e. state productionMode. In this
precise case, the resulting statecharts of these two
applications are identical.

We also applied SCTL transformations with this case 
study to discover potential specifications errors. For

instance, by applying the SCTL transformation
startWith on state productionMode followed by an
application of the delUnreach transformation. We can
notice, by looking at the resulting statechart that when the 
system is in production mode, then it cannot switch back
to service mode anymore, which is potentially an
undesirable behavior of the system. SCTT allowed us to
exhibit this behavior that is probably a specification error.

powerUp

serviceMode

lightOn lightOff

passengerDetected

childSeat

adult

child

passengerAnalysis

passengerNormalPosition

passengerOutOfPosition

productionMode

passengerStatusSent

diagnosticSent

wait

powerDown

switchLightOff/-.

switchLightOn/-.

adultDetected/switchLigthOff.

childSeatDetected/switchLightOff.

childDetected/switchLightOn.

checkPassenger/-.

passengerInOFP/switchLigthOn.

passengerNotinOFP/switchLigthOff.

sendDiagnostic/-.

-/-.
sendPassengerStatus/-.

-/-.

enterProdMod/-.

powerCut/-.

contactKeyInserted/-.

Figure 5.2 – Case Study

6. Conclusion
The main contribution of this paper is the definition of

the SCTL model transformation language allowing the 
abstraction of specifications expressed with RTSL
statecharts in order to simplify them. The advantages of
this language are: (a) abstract statecharts represent
simplifications of statecharts. These simplifications are 
mainly structural. Our approach does not aim to guarantee 
that all behaviors are preserved after transformation; (b)
the formal description of SCTL has helped us to precisely
automate its transformations.

We have defined a formalization of Harel's statecharts,
that we have called RTSL, in order to create a model
transformation language for RTSL statecharts. This
formalization contains some restrictions, among others,
transitions have one source state, one target state, at most
one event, and at most one action. These simplifications
allow us, while keeping fundamental concepts of
statecharts (states, transitions, hierarchy, and
concurrence) to define the basis of our transformation
language: SCTL.

SCTL defines 8 transformations belonging to two
categories of transformations (structural and functional).
Semantics of these transformations is expressed at the 
level of the abstract syntax of RTSL statecharts. SCTL
transformations described in chapter 4 are the following
ones: (1) abstraction, (2) extraction, (3) deletion of a 
state, (4) modification of a default state, (5) deletion of a 
transition, (6) modification of the initial states of a RTSL
statechart, (7) deletion of an event in the statechart, and
(8) deletion of inaccessible states.
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SCTT, a prototype implemented in the MagicDraw
UML modeling tool has been realized to establish a proof
of concept of our approach and particularly our
transformation language SCTL. All the illustrations of
transformations of this paper have been performed with
this prototype tool.
Several perspectives can be considered.
• Definition of the semantics of SCTL transformations

at the level of the semantics of RTSL statecharts. This
will allow us to validate SCTL transformations with
respect to the semantics of our statechart. This
validation will help estimating more precisely which
behaviors are lost during the transformation.

• Take into account real-time concepts: extension of the 
syntax of RTSL, proposition of temporal abstraction
rules specific to embedded systems.

• Extension of the supported UML concepts by RTSL:
addition of variables, guards, and actions on variables
at the level of transitions of RTSL statecharts. This
will allow us to define additional SCTL
transformations based, for instance, on data 
abstractions.
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Transcript from the discussion

Q (ES): is there some control or transformation to
make sure which properties are lost in the
abstraction?
A: For now, we can not guarantee what information
is lost, which properties.
It may be a problem in some applications to make
time abstractions, this is especially important in
e.g. real-time systems.
Q (Teig): how much of added code is
transformations, and how much is handling
graphics
A: integration into tools is quite well done, so no
need to do graphics.
Q: Have you thought about using existing
tools/frameworks for approximations?
A: That is interesting, we should look into it.
Q (Kone): Given a statechart model can the
method be used for other areas, to find some
abstraction.
A: The approach is aimed at a specific domain of
systems with few states, could be used for
anything which is a statechart, to be transformed in
a specific domain.
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Abstract— Testing is an ultimate phase of product life cycle to
which particular attention is paid, namely when dependability is
of great importance. This work is concerned with the checking
of dependability requirements by means of tests experiments.
Here we address real-time embedded systems for which validation
encounters a complexity problem due to real-time requirements.
In this paper we propose a partial technique aimed at avoiding
this problem and illustrate it with an example.

I. INTRODUCTION

The interest for embedded systems in every day life is know
well recognized. The ERCIM issue [6] is a good reference that
highlights the importance of dependability issues for this type
of systems. Formal validation plays a major role here since this
activity contributes to the development of reliable systems.
Model-based testing is one of the formal techniques used
for the validation of software/hardware systems. It consists
in applying a set of experiments, generated a priori from the
formal model of the specification, to a system implementation,
with the intention of finding and discovering errors. The set of
experiments (also called test suites) should be of reasonable
size, but exhaustive in the sense that for each faulty system a
set of experiment generated is able to detect potential errors.
To ensure this, a strategy of selection is required. In the case
of ERTSs (Embedded Real Time Systems) the test selection
problem is worsened because a huge number of time instances
are relevant to test. To achieve a good selection, care must be
taken to define when to deliver an input to the system under
test and when to expect an output.

In our framework, systems are modeled with Timed au-
tomata[1]. This popular model has been widely used as a
basis for the verification of timed systems (real-time model
checking) [11], [7] ... For tests selection from timed automata,
there are currently two main approaches in the literature.
The first one consists in selecting tests patterns from the so-
called region graph by Alur and Dill[1]. But the combinatory
explosion involved in the computation of the region graph
constitutes a limitation of this approach [5], [3], [10]. The
second approach is based on the so-called symbolic computa-
tion which enables a smaller graph, compared to the region
graph. The concerned authors use the symbolic techniques for
testing a specific class of non deterministic specifications [8],
[9]. But the determinisation is realized “on the fly”, during test
generation and execution. This task is often complex and time
consuming. It can disturb the tester while the latter must react
quickly to the actions performed by the system under test.
In our work we do not address determinisation. We consider

specifications that are deterministic, but we use symbolic
techniques for the selection of specific purpose tests that
correspond to some expected dependability requirements. We
argue that the resulting approach is a pragmatic and efficient
way of computing timed tests suites with low complexity,
since it combines symbolic technique with the exploration of
specific/subset part of the specification model.

The remainder of the paper is organized as follows. Section
2 describes the time based formalism we use for describing
embedded systems. Section 3 presents the features of our test
computation method. Section 4 concludes the paper.

II. MODEL FOR EMBEDDED REAL-TIME SYSTEMS

We consider the functional and abstract behavior of em-
bedded system that may be for instance controlling some
process while interacting with its environment through inputs
and outputs. Further testing of such embedded system will
concern only functional and behavioral requirements [2], [4].
Here, we assume that the embedded system model can be
directly provided in terms of input/output transition system, or
compiled/translated into such model from another one (model
translation takes part of our research). We need to model real-
time mechanisms and we use clocks for that. The TIOSM
model (Timed Input Output State Machine) is a particular kind
of timed automaton [1] where inputs and outputs are modeled
in an explicit manner.

Definition 1: TIOSM.
A TIOSM is a tuple
M = (S(M), L(M), C(M), s0(M), T (M)) where:

• S(M) is a finite non-empty set of states (also named
locations);

• L(M) is a finite non-empty set of interactions;
• C(M) is a finite set of clocks;
• s0(M) is the initial state in which all the clocks are

initially reset to zero;
• T (M) is a finite set of transitions.

A transition t ∈ T (M) is a tuple t = (s, µ, D, Z, d) where
s and d are the starting state and the destination state of t.
µ represents the interaction executed during the transition. µ
may be some input (denoted ?a) or output (!a). Z is the set
of clocks to be reset to 0. D is a set of real time constraints
of the form Ci ∈ [ai, bi] (Ci ∈ C(M); ai, bi ∈ IR ∪ {∞}) (IR
is the set of real numbers). The transition can be fired only if
the conjunction of the time constraints in D is true.
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 !d
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S5

S6

S3S4 S8

Fig. 1. (Deterministic) model of the embedded system

Example.: The example below is the description of a
generic system that is embedded in a real-time environment.
We model the system interactions with a set of labels L =
{a, b, c, d, e}. Executions are constrained by timing require-
ments defined with clocks C = {x, y}. The formal model of
our system is depicted with figure 1. The system is initialized
with input a while the clocks x, y are reset to zero. After that,
the behavior of the system will depend on the instant when it
will receive input interaction b. Globally, if b is received early
(between 2 and 4 time units), the system will perform output
interaction c, at least 2 time units after a. If b could not be
received before 4 time units, a warning notification action, let
s say d must be sent, before 5. If this notification could not
be computed on time, some alarm e must be trigerred, but no
later than 10. The reader may report to the model in figure 1,
for the precise behavior of the embedded system.

III. TEST CASE DESIGN

Overview.: There are different test selection strategies
that one could apply : random behavior testing, state checking
etc. In our framework, we consider that a given test case
must address a specific goal, related to a specific requirement.
Therefore, our approach consists in computing one test case
for one specific requirement (once a time). Technically, this
enables us to restrict the computation to the subset part
of the system model which is involved in the considered
specific requirement. This strategy avoids to handle the whole
specification model for computation, and thus reduces the
computation complexity.

Dependability requirements are those requirements that are
considered as particularly important (and critical) in the
system design. We considered that system analysis must be
focused on such requirements with a high priority.

A. Dependability requirement

A Dependability requirement characterizes some particular
feature that one would like to check on the embedded system.
The following is an example : “After input a is computed,
the subsequent computation scheme of the embedded system
MUST output b BEFORE some timeout occurs”. Such require-
ments can easily be formalized with temporal logics (with

?a   y:=0

y<5

!d

?a   y:=0

!e

REJECT REJECTACCEPT ACCEPT

otherwise

otherwise

otherwise otherwise otherwise

5<y<105<y<10
!e

L1L1

L2
L2

!d
y<5!c

y>2

Fig. 2. Example of Dependability requirement

time) or with a TIOSM. Such TIOSM must be supplied with
some means to check the requirement.

Definition 2: Dependability requirement.
A Dependability requirement, say DR, is a deterministic
and acyclic TIOSM with a distinguished non empty set of
states. This set of states is denoted by Accept(DR) (resp.
Reject(DR))
Accept(DR) ⊂ S(DR) (resp. Reject(DR) ⊂ S(DR)).
Accept(DR) defines a set of accepting states. If the computa-
tion scheme reaches one of these states, then the requirement
is exhausted. Reject(DR) defines a set of rejecting states. In
the definition of the dependability requirement, these states
are used to represent the paths or behavior that we would like
to exclude from the search. For instance, in the example of
figure 2, we would like to check the ability of the system to
send alarm e, when this is desired. Here we do not consider
experimenting the warning computation d. The requirement is
modeled with a TIOSM which states (or locations) are {L1,
L2, ACCEPT, REJECT}. In the figure 2, the left part is a
standard version (while the right part shows how one could
express default behavior with additional transitions). otherwise
is a short representation of all alternatives.

The test case computation algorithm has two main inputs:
The embedded system TIOSM model, denoted by Spec and
a given dependability requirement DR. The dependability
requirement model is a kind of observer with real-time features
which keeps track of the walk through Spec, until the expected
test case is effectively checked (i.e. an accepting state of
the dependability requirement is reached). The analysis is
restricted to the subset of Spec checked by the observer.
In automata theory, this can be formalized as a kind of
synchronous product of Spec and DR. Here in our case, a
transition is firable in the synchronous product, if it is firable
in Spec, or it is firable in both Spec and DR.

B. Partial computation

Let Spec be some embedded system model (or specifica-
tion), and DR be a given dependability requirement. Both
Spec and DR are formalised with TIOSM as we defined
before. The partial computation of DR within Spec is char-
acterized by a TIOSM SP obtained with the synchronous
product of Spec and DR. The definition of SP follows.
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Definition 3: SP.

• L(SP ) = L(Spec) ∪ L(DR);
• C(SP ) = C(Spec) ∪ C(DR);
• S(SP ) ⊂ S(Spec) × S(DR).

S(SP ) and T (SP ) are the smallest relations defined by the
rules below:

• (Rule R0:)
s0(SP ) = (s0(Spec), s0(DR)) ∈ S(SP ).

• (Rule R1:)
A transition is fired in Spec, but not in DR, which
remains in the same state

(s1,s2) ∈ S(SP )∧ (s1,µ,D1,Z1,s′
1) ∈ T (Spec)

(s′
1,s2)∈S(SP )∧((s1,s2),µ,D1,Z1,(s′

1,s2))∈T (SP )

• (Rule R2:)
A transition is fired in both Spec and DR. The two
automata move to their next states.

(s1,s2)∈S(SP )∧(s1,µ,D1,Z1,s′
1)∈T (Spec)∧(s2,µ,D2,Z2,s′

2)∈T (DR)
(s′

1,s′
2)∈S(SP )∧((s1,s2),µ,D1∪D2,Z1∪Z2,(s′

1,s′
2))∈T (SP )

The previous rules formalise the skeleton of the behaviour
to be tested. Remember that the tester interacts with the
implementation under test, while observing its behaviour. Rule
R1 defines the general walk through Spec, while Rule R2

defines when the firing of some expected transition in Spec is
checked in DR.

Now, we extend the definition of Accept for the syn-
chronous product: Accept(SP ) ⊂ S(Spec)× Accept(DR).
The states of Accept(SP ) are elements from S(SP ) of the
form (s1, s2), where s2 is an accepting state of DR.

Symbolic test paths computation: Now, test case compu-
tation turns to the selection of executable patterns that lead
to the Accept set of SP . Time semantic based analysis can
usually be borrowed from the so-called state class graph or
region graph. This behavior graph captures all possible exe-
cutable traces of the system. The time executability constraints
of the embedded system can easily be stated by a conjunction
of linear inequalities relating the execution instants of the test
case transitions that lead to the Accept set. These inequalities
are symbolic representations of the time constraints of the
system. The reader may report to the references [1], [8] for
classical symbolic graph computation algorithms of timed
automata. The feature that we have added in our framework is
the partial (or local) exploration of the graph with a standard
Depth First Search algorithm. Figure 3 attempts to illustrate
the local exploration: The search is performed depth-wise,
so that only a local branch of the graph is memorized,
until the expected behaviour is found. For instance, assume
that, according to a given dependability requirement, we are
interested in checking the part of the behaviour where some
interaction ’f’ is followed by some interaction ’g’ ( f→ g→).
Then, in the figure 3, the bold part corresponds to the path
searched. The thin parts are gave up during the search.

xy

f

a

gh

z
(t2)

(t3)

(tn)

(t1)

Breadth

Depth

Local part

Fig. 3. Partial exploration approach

Our approach to the design test pattern implements this
exploration technique. It is based on the joint computation of
dependability requirement and specification model as it was
formalised with definition 3. The symbolic test path search
stops when an accepting state is reached. Consequently, we
compute the expected test pattern while the whole symbolic
graph need not to be explored.

Test system structure: The test graph computed from SP
characterizes the static behaviour to be checked. It defines the
subsequent structure of the tester. Since a test system interacts
with some implementation under test (IUT), the design of the
tester goes through inverting the inputs and outputs of the
system model. An input of the system becomes an output
of the tester (and vice versa). If the test system receives a
wrong output, it produces a fail verdict (and enters a fail state).
During a test campaign, three possible verdicts can be assigned
according to the different observations:

Let µ be some action and τ be its execution instant.

• FAIL verdict: either the action µ or the time τ does not
match the specification.

• PASS verdict: the action µ and the time τ match the
specification and the dependability requirement.

• INCONCLUSIVE verdict: the action µ and the time
τ match the specification, but they do not match the
dependability requirement.

The figure 4 depicts the structure of the test system obtained
from the specification model of figure 1 and the depedability
requirement of figure 2.

To recap, our test design approach consists in the following
steps :

• SP Computation of the product of the system model and
the dependability requirement.

• Symbolic graph computation with a partial approach.
• Inverting of inputs and outputs of SP
• Add of verdict assignments and the corresponding tran-

sitions
• A test case is then an instance of the tester symbolic

execution.

In our example, the symbolic constraints are straightforward
since after initialisation, only clock x is reset to zero once (on
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Fig. 4. The resulting test system structure

recption of b). All th execution patterns that lead to PASS
correspond to successfull test experiments showing that the
expected dependability requirement is met.

Finally, in our work example, a successful test case (as
expected from the dependability requirement), is for instance
the following sequence:
(!a; x := 0; y := 0) → (!b, x = 4; x := 0) →
(?e, 5 < y < 10) → PASS.

An example of failure execution is :
(!a; x := 0; y := 0) → (!b, x > 4; x := 0) →
(?e, y = 10) → FAIL.

In our framework, the test design approach illustrated
with the previous example can be fully automated (we are
currently implementing prototypes for that) and repeated for
each dependability requirement considered. The inputs of the
method being one specification model and one dependability
requirement modelled as shown in the previous paragraphs.

IV. CONCLUSION

Checking dependability requirements remains a develop-
ment phase of high importance for embedded systems. Real-
time features involves additional constraints on time man-
angement since a sound test system must compute when to
send an output to implementation, and when to assign a given
test verdict. The use of formal model enables the design of
sound tests, but formal analysis of behaviour suffers from
the complexity involved in the exploration of the behaviour
graph. The test design approach presented here proposes a
partial symbolic exploration which promises good results for
the testing of complex embedded real-time systems.

Next step of the work is the full implementation of the
approach presented. We need a testing tool as we are currently
working on the experimentation of our work with industrial
specifications from aerospace standards.
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Transcript from the discussion

Q: You’re specifying properties as an automata, find a
witness and transform this to test case?
A: the model is also an automata, and the test case is
the part of the model which meet 
Q: Did you look at model-checking tools, and did they
perform well enough?
A: Model-checking is different from testing, because you
try to check the model by extensively checking states.
But when testing you consider the system through
interacting with it.
Thus a testing tool was developed. The input is the
same, but when you have testing you have some non-
deterministic properties..
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Abstract 

This case study shows CSP style synchronous inter-
process communication on top of a run-time system
supporting SDL asynchronous messaging, in an  em-
bedded system. Unidirectional, blocking channels are 
supplied. Benefits are no runtime system message
buffer overflow and "access control" from inside of a 
process of client processes in need of service. A
pattern to avoid deadlocks is provided with an added
asynchronous data-less channel. Even if still present 
here, the message buffer is obsoleted, and a ready
queue only could be asked for. An architecture built
this way may be formally verified with the CSP process 
algebra.  

1. Introduction 

This "industrial" paper assumes that asynchronous
interprocess communication is known by the reader. It 
describes a case study where the "opposite" –
synchronous interprocess communication – was a
viable solution, even for a small embedded system. A
reader should hopefully be triggered to investigate 
further, as this short six page format implies. 

The starting point for this now "work done" case
was an in-house process/task non-preemptive run-time 
system written in C, compiled for an Atmel AVR 
processor, which contained 128 KB FLASH for
program code and 32 KB external RAM. Several 
products built on this architecture had been
successfully shipped. Messages were always asynchro-
nous, meaning that any sender process would "send & 
forget" and go on.

But there were aspects where that design could be
enhanced, like 1.) the system message buffer could in
theory overflow, 2.) pointer movement between

processes (and possible race conditions) is difficult to
handle and 3.) incoming messages could arrive in a 
process unprotected: regardless of its internal state. 

However, we did close these cases by careful 
design and field trials. 

Still, in another product, we decided to build a 
layer of synchronous, blocking and unidirectional 
channels on top of the asynchronous system. Having 
also shipped a product with this paradigm and imple-
mentation, with no new software release after a year's
use (also thanks to stable functional requirements), we 
decided to continue and use it in a second product.

The concern here had initially been to select a 
dependable software pattern to avoid deadlocks.
Interestingly, the selected pattern includes data-less
asynchronous signal channels (later). 

2. SDL and CSP 

The two "competing" paradigms here are SDL ("the 
asynchronous")  and CSP ("the synchronous" in this
context). The edit-by-anyone Wikipedia dictionary [1] 
(also pointing to more academic sources) has entries of
both: 

SDL: "SDL (short for Specification and Description
Language) is a specification language targeted at the 
unambiguous specification and description of the
behaviour of reactive and distributed systems. It is
defined by the ITU-T (Recommendation Z.100.) 
Originally focused on telecommunication systems, its
current areas of application include process control and
real-time applications in general." 

CSP [2]: "'Communicating Sequential Processes' 
which was published in 1985. In May 2003, that book 
was the third-most cited computer science reference of
all time according to Citeseer (albeit a very unreliable 
source due to the nature of it sampling). … As its name
suggests, CSP allows us to describe systems as a 
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number of components (processes), which operate in-
dependently and communicate with each other solely
over well-defined channels. CSP introduces a process 
algebra which is used to describe a process' communic-
ations with its environment."

Some languages influenced by CSP are occam [3]
and Ada [4].

Synchronous systems may be built with asynchro-
nous components, by adding some kind of handshake
(like, waiting for a reply or building mechanisms into
the run-time system). Likewise, asynchronous systems 
may be built with synchronous components, by adding
some kind of overflow handling (like, overflow buffer
processes.)

Most embedded system would probably need to use
both paradigms. If we build with solely synchronous
primitives, no input should allow the software or
system to malfunction (therefore, have control on
input, so that loosing data is a conscious action). If we
build solely on asynchronous primitives, no inter-
process communication should be allowed to crash the 
system (therefore, have control on it and introduce 
some kind of handshake or synchronism).  

3. Blocking

When a process waits for a reply or access to other 
processes (below), it blocks "on the synchronous chan-
nel". Think of blocking as equal to what a calling func-
tion does when it waits for a called subroutine to re-
turn. There is no other thing to do than "wait".  

Opposite, an asynchronous sending will not block.
Starting new processes from within a process may

have "blocking fork/join sematics", depending on the
operating system (occam blocks). In our system
processes are only spawned from "main", before the 
scheduler is entered (the spawning in itself will not 
block, so that more than one process may be started).

With blocking semantics, parallel slackness be-
comes an issue – that we have enough processes to get
things done, with a goal to handle all necessary I/O
activity. Total work done should not be less.

Observe that passive waiting is indeed used when
"delay" is wanted. 

4. Access control of other processes

With blocking semantics, we will also be able to
have others hang while waiting for this process. This
could be busy processing or busy with another session. 
Then, in due course, we would open access to this 
from others, and process their messages, one in turn.  

A side effect of this is that we may choose whom 
we want to serve, so that the server (this) could serve 
the clients (them) in a fair manner – or in the manner it 
chooses. 

The term most often used for this is selective 
waiting. Both occam and Ada (and UML 2.0 [5]) have
structures for it, and we have implemented it in the 
channel layer. It is called ALT for ALTernative. 

Another facet is that processes built with this
scheme certainly need to obey the protocol semantics
in interchange with other processes, but they do not
need to know the semantics of the other processes' 
internal behaviour. As some times with asynchronous 
systems, when, and perhaps even if a message is put in
a common message queue, need not be known. Not 
needing to know another party's semantics has been
referred to as WYSIWYG semantics [6]. This also
makes processes become dependable software compo-
nents. It also shows the compositional semantics of
CSP.

Observe that this is not the same as the monitor
mechanism implemented in Java, where some sort of
queuing of the blocking threads is done. However, one
can build channels with monitors as building blocks in
Java, .NET and Posix [7]. At least one major operating
system bases interprocess communication on synchro-
nous, blocking, rendezvous (later) type communication 
from bottom and up, and the vendor argue strongly
about the safety perspective of this solution [8].

5. The layered architecture
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The channel abstraction API resides on top of the 
SDL run-time system. Only one SDL function is not 
abstracted, the _FSM_Init_, which initialises a process. 
"SDL processes" may coexist with "CSP processes", 
but any communication between the two worlds would
have to be done as asynchronous messages, with
channels not used by the CSP process in charge during
such a session.

6. The channels C API abstraction 

All C code use of this API is by macros. A channel 
is a global data structure containing id of the first
process, one half of the memcpy parameters, and states 
in the channel. For debug purposes we optionally
insert intended sender and receiver identification.  

There are channel initialisation, inputs (for use in
ALT constructs and not) and outputs (outputs do not
know whether they are part of any ALT). An input 
may also have a timeout attached. And the local 
communicating state machines (processes) may need to
want themselves to be rescheduled in some cases.

All these macros define state changes that are 
visible from the outside of a process. 

7. Semantics of asynchronous messages

A message is sent (memcpy'ed) into a message
queue of individual elements, all with the size of the 
largest element. Proc A and B may proceed to send
other messages immediately, before they are 
descheduled, i.e. they do not block. A receiver must 
handle the incoming message queue (and memcpy the
data again if it wants to keep it) on a first come first 

serve basis. Should any of the messages not confirm
with some process inner state, it is discarded or set 
aside for later processing. The process becomes
another scheduler above the run-time scheduler. If one
needs to send larger chunks of data than one could 
afford to put into the message queue, a pointer to the 
message is sent instead. This requires access
mechanisms to be built into the data segment, and
some kind of feedback to the sender to inform that data 
has been read and is free (i.e. some synchronisation
mechanism). In effect, one invents part of the channel 
concept anew every time. Also, with asynchronous
messages, a (fast) producer and a (slow) consumer may 
be out of phase, and there is no mechanism to avoid
queue overflow (..than to insert synchronousity). In
most systems an overflowed interprocess message
queue is detected by the run-time system, which then
often have no other way out than to restart the system. 

 8. Semantics of synchronous channels 
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A channel is a named entity. You send or receive
“on a channel”, not with a named process. It acts as a 
handle to a "protected" region of the code (or rather to
a state-controlled protected phase), where the two
interacting processes meet and do a memcpy from
sender's internal to receiver's internal data structures. 
The memcpy is invisible in process code. In our case 
the channel is one-way. This meeting and memcpy'ing
phase is often called a rendezvous, an Ada term. The 
part arriving first (sender or receiver) blocks and is 
descheduled until the second part (receiver or sender) 
arrives. Then memcpy and continuation of last part, 
and rescheduling of first.

Observe that an input timeout or simply a wait (for
polling) is implemented as a channel with a timer on
the sender side. The run-time system inserts the re-
scheduling message when a timer has timed out. It also
hinders timeouts to enter a process incorrectly if the 
optional channel(s) attached have already been taken.

Observe that we have not implemented timeout on
sending. To implement this on on-chip interprocess
communication with non-preemptive scheduling would 
have been straighforward, had we seen any need for it. 

The asynchronous channel implemented here does 
not cause the message buffer to overflow if one rule is 
obeyed: That no new asynchronous signal is sent
before contact with the receiver has been achieved. 

9. “From message queue to ready queue”

This paper’s title implies that the message queue is 
now not used for anything else than for sending
dummy signals to a process, with the only purpose of
scheduling it. So, we could have dropped the message
queue for a process ready queue. But the asynchronous
run-time system is well tested and we wanted to keep
it.  

Such a ready queue would also need to contain the 
cause of the rescheduling. The place this is needed is 
in an ALT, where we must know which clause that 
caused the rescheduling (i.e. channel number or
timeout).

10. Deadlock avoidance 

Where two processes spontaneously need to send
data to each other, a blocking communication scheme
might cause deadlock. This is a state where processes 
try to communicate – in a circular pattern – blocking
for each other to become ready, and therefore unable to
proceed. This is pathological and must not happen. All 
processes run at the same priority, so any priority
inversion problem is ruled out in the system. 

The pattern we chose to avoid this was to give the
processes clear roles: slave and master. Master may 
send on the blocking channel any time (solid arrows)
when it has something. Slave would never block on 
any spontaneous message, since the asynchronous 
“poll me” message (stippled arrow) lets the slave go on
and not block, and then instead hang in an INPUT or 
ALT on the input channel. When the “OK, come on”
message arrives from the master, the agreed upon 
protocol assures no deadly embrace. 

11. Coding examples 

(The text folds starting with “... “ in the code 
excerpt here contain code, or other folds.)

All process data is kept in a local "Context" in each
process. It is allocated on the heap in the initialising
phase. The scheduler schedules a process when it calls
it. A process keeps track of its own state and does a 
switch/case on this state. It must run to completion on
every scheduling, since there is non-preemptive 
scheduling. Therefore a process function return goes
back to the scheduler.

This gives the nice side effect of one common stack
for all processes.

Asynchronous i/o is pulled in/out by interrupts that
use queues, which are polled by driver type processes. 
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Above, is an example of an input ALT construct, 
where we see two channels with a timeout. A compo-
nent of the ALT will be skipped if its “Guard_”
becomes FALSE. This is the way to control client's
access. 

Not shown is the hand-coded test to verify that all
guards are not FALSE (equal to the occam STOP, 
where a process cannot proceed). If so, it is a program-
ming or design error, suited to "crash" – for further 
investigation and required program update. 

Observe that there is no busy waiting by the 
process to facilitate waiting on a channel. This is be-
cause the second contender "pulls" the rescheduling of
the first. This is the usual monitor & condition variable
solution (also [7]). 

12. Formal basis of the architecture 

CSP, on which this scheme is based, has not been
much discussed here, but it is possible to model and 
verify any system with this process algebra [9]. This 
would be out of reach (expensive), and not very 
interesting for us (small system and use of known
software patterns). (Admittedly, this author knows 
CSP through occam and has had no hands-on
experience with it.) However, other process algebras, 
like FSP, analysed with the free LTSA tool, may also
be used [10] (it has been tried). Modelling 
asynchronous systems (albeit with finite size buffers, 
which makes them synchronous when buffers are 
empty/full) is also possible with Promela and the free 
SPIN tool [11]. 

The channel layer API discussed here was 
modelled on macros used by the code generator of the 
SPoC occam-to-C compiler [12]. SPoC also was a 
non-preemptive run to completion system, with
appropriate scheduling queues and a timer queue (but 
no message queue). All the communication states and
process start & stop that we would have to code by
hand in the project was done automatically by SPoC, 
since occam supports channel input, output, ALT, 

input timeout and wait, as well as compositional 
prioritised processes.

13. Discussion

The system adds approximately 2 KB of program
memory. Execution time overhead (as compared to the 
asynchronous system) depends on whether the asyn-
chronous system uses any synchronization to make it 
"safe" (this would make the systems about equal), and
how the asynchronous system uses the received data. If
it needs to keep the data past next descheduling, the
asynchronous system needs two memcpy's.  

Setting up a communication or an ALT obviosuly 
takes more cycles than just returning from the process, 
which is the asynchronous behaviour. But these cycles
are only a small percentage of burnt cycles in our
processes anyhow, so the overhead has been insignific-
ant for our applications. 

We would not have used this system had we had,
say,  8 KB of code space (the SDL runtime system is
about 20 KB, and we need that anyhow). But with 128 
KB of code space (or, soon 256 KB – nice for an 8 bit 
machine) and 16 MHz clock, the added well-being of
knowing that the system never overflows the message
queue or sends unwanted messages into a processes, 
outweighs the overhead.  

Using this methodology (with occam, SPoC and a 
C CSP library) has proven valuable for about 15 years,
where (provided functional requirements are stable),
"ship & forget" was more the rule than the exception.
This was in embedded systems (then with Transputers
and later DSPs and Intel 386ex machines) and on host
Windows machines. 

When the communication states have been set up,
using them is straightforward: fill local structs in the 
context and set a state variable to send, or just set a 
state variable to input or wait. 

But, there is more complexity to this system than I
like to admit, also when it comes to personal engine-
ers’ preferences and background. If OO has had its
way, the CSP kind of thinking certainly also has [13]. 

Grasping the communicating state machines, which
are not in the application domain, but constitute the 
skeleton of the process/data-flow architecture, is
individual. A channel most probably seems as belong-
ing to OSI network (3) or transport (4) layer, and
certainly not the application layer (7). Some program-
mers learn this methodology easily; let them handle it. 
Some resist or do not bother about these technicalities, 
let them concentrate on the product proper and
application communication layer. The infrastructure
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person(s) should then set up the necessary construct 
for the application people to just use.  

However, when the communication infrastructure 
code once has been set up, it tends to stay stable and
work.

Setting the size of the present ready queue is a 
matter of finding the maximum scheduling incidence
volume. When this is found, even the producer-con-
sumer problem will not cause further queue usage. To
find this value we let the scheduler catch any overflow 
and then increase, with a margin. This is the same
procedure as with a pure asynchronous system. How-
ever, when maximum has been found, there is no room
for further surpises, since the value is a function of the 
number of channels and processes, not the communic-
ation pattern. 

A future dream is to have (a subset of?) Ada avail-
able for microcontrollers of this type, or Java (where 
CSP libraries [14][15] are available). Or hope that 
result of ongoing occam research will hit industry 
some day [16]. In the meantime, we could use soluti-
ons as the one discussed here, which really is quite
dependable, even if it is based on hand-written C.
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Transcript from the discussion

Q(Shi):What do you think about future of ADA/Java in embedded systems?
A:  Java used in e.g. mobile phones, ADA used in other areas, such as military.
But occam is pretty much a dead language..
In some newer architectures, with many processors communicating, there may arise some of the same
problems as with occam and transputers.
Q(AS): This is used in e.g. smoke detectors, i.e. smoke detectors, i.e. systems with very high
dependability requirements?
A: Yes, this will be a part of our next generation of smoke detectors, that we sell.
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Abstract 

Recent advances in distributed system architectures 
may provide the solution to a number of challenges in
future embedded systems. Middleware and grid
technologies make it possible to utilize the processing 
power in subsystems, so that greater reliability 
through fault-tolerance can be achieved, as well as 
efficient use of resources through load-sharing. 

In this paper we try to revisit and reassess some of
the established truths and beliefs regarding the use of
distributed operating systems and middleware in
embedded systems.  

1. Introduction 

Embedded systems are found everywhere, and are 
becoming increasingly connected. For industrial
systems, such as in a chemical plant or an oil rig, there 
may be from tens to tens of thousands of different
processing units in operation, and these are becoming 
more powerful and multi-purpose. In homes, DVD 
players, gaming consoles and multimedia components 
are becoming more powerful than our personal
computers, in terms of processing capability. 

There is a trend towards connecting and networking 
these systems, and integration of services such as 
multimedia and entertainment/games along with data 
from embedded applications and internet services. 
These services mostly have different real-time and 
Quality of Service (QoS) requirements. 

Although the applications for industrial systems and 
consumer products are very different, many of the 
requirements will often be similar. A video stream of
bad quality because of lost frames might be as 
unacceptable for the consumer as it is to lose real-time 
data from a sensor in process control. Video and 
multimedia are also becoming commonplace in 
industry networks, e.g. for surveillance purposes. 
Security is obviously essential for the factory plant,
and also in a home, especially when considering 

wireless networks, which are becoming increasingly
widespread. 

Traditionally, the domain of distributed systems has 
been dominated by supercomputers and parallel
computing. However, supercomputing ability is 
already becoming commonplace in homes and 
everywhere around us. Examples include the next
generation in game consoles, Microsoft’s XBox 360 
and Sony’s PlayStation 3, which are both equipped 
with multi-core processors, and support for multiple 
operating systems [1].

By using principles from distributed computing it
is possible to achieve fault-tolerance, and thus increase 
the reliability of applications. Load-sharing is also 
possible, in order to make more efficient use of the 
available resources. 

However, there is a need for new standardized 
interfaces for enabling this kind of distributed 
computing in embedded systems. The distributed 
architectures that are chosen need to be scaleable and 
reliable as well as extendable across different 
hardware and network protocols. There should also be 
very little manual effort involved to configure and 
maintain the system, thus reducing the operating cost. 
While in industry it is possible to rely on support
personnel, this is not an option in most homes. 

In part 2 and 3 of this paper we review some of the 
different architectures for distributed computing, and 
try to give some background for the development of 
these. In part 4 we revisit some established beliefs 
regarding the use of distributed architectures in
embedded systems. Finally, in part 5 we will address 
some possibilities for the future of distributed real-time 
and embedded (DRE) systems. 

2. Distributed operating systems 

Distributed operating systems have been developed 
over the years to address different needs, such as 
parallel execution of processes, reliable transactions or 
real-time behavior. 
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2.1 General distributed operating systems 

Traditionally, distributed operating systems have 
been developed for massively parallel computing, 
usually for large, homogenous systems, relying on 
some common, specialized hardware or software 
mechanism. The development has gone from
distributed systems based on transactions and point-to-
point message passing, e.g. using MPI  [2], to support
for distributed shared memory, which may be either 
uniform or non-uniform. SGI’s NUMAflex 
architecture [3] is an example where special hardware 
is being used to support the latter. 

Some initiatives in the development of large 
distributed operating systems in later years have been 
built with open source software, e.g. Beowulf Linux 
clusters [4].

One of the main characteristics of a distributed 
operating system is that it should just appear as one big 
system from the “outside”, although the system
consists of a number of elements. In other words, the 
distributed nature of the system should be transparent
for the applications. In order to achieve this there is 
usually a large degree of homogeneity in these 
systems. 

2.2. Distributed real-time operating systems 

Real-time operating systems are typically niche 
products, with an emphasis on predictability, 
timeliness and reliability. Although a large variety of 
different real-time operating systems exist, the authors 
are not aware of many that are specifically designed to 
work as distributed operating systems. 

One example, however, is QNX, which is a 
commercial real-time microkernel operating system. 
Support for message passing between distributed 
processes is transparently built into the QNX system
core. This is achieved through the proprietary QNet [5]
protocol, which runs on top of standard Ethernet, a 
serial line, or a TCP/IP connection. 

However, this approach requires that all nodes run 
the QNX operating system, and this is often not 
possible, or even desirable. The trend is to use 
established and open standards for communication 
when this is needed, e.g. TCP/IP sockets, which are 
normally available, even if these are at a lower 
abstraction layer. 

3. Middleware 

Distributed applications may run on systems that
are not explicitly distributed on the level of a 

distributed operating system. The infrastructure that is
used for “stitching together” such systems is referred
to as middleware. Middleware can be seen as an 
abstraction layer between the application and the 
operating systems, network protocols and hardware 
that the distributed application(s) run on. 

An overview of the different requirements and 
solutions for providing middleware can be found in
[6].  The requirements for middleware include 

x Network communication 
x Coordination 
x Reliability 
x Scalability 
x Heterogeneity

The solutions for middleware have gone from
providing basic services, such as transactions and 
message passing, to more advanced models of 
distributed computing, with object-oriented or 
component middleware. 

3.1 Middleware in use 

In some niche areas the use of middleware 
standards, such as CORBA [7] and D/COM [8], has 
been successful. There are, however, some
shortcomings to these standards.  

CORBA is supported on many platforms, but for 
smaller, embedded systems it is probably too large and 
cumbersome. In the earlier versions of CORBA it was 
a problem that different vendors had their own 
implementations which were not standardized to be 
portable, but these problems seem to be resolved.  

The CORBA 3.0 standard introduced the CORBA
Component Model (CCM), which uses containers and 
ports to make it easier for application designers to
create distributed objects that interact with each other 
within this framework. Some initiatives to support 
real-time and QoS services for CORBA are TAO and 
CIAO [TAO]. 

COM/OPC [9] has found some acceptance within 
industrial process control, where MS Windows has 
gained support in recent years. However, there is a 
lack of support for new services, such as handling 
Quality of Service for prioritized traffic. There is also a 
need to increase the reliability of the OPC services. 

IndustrialIT [10] is an architecture specifically 
created for easing the integration and reuse of software 
components within distributed industrial systems. This
framework, which is an ABB product, is object-
oriented, client-server based, and built using
established standards from Microsoft, i.e. ActiveX and 
COM/OPC. 
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3.2 GRID middleware 

GRID [12] networks are commonly referred to as 
the future in distributed computing, as can be seen 
from the number of EU funded GRID research 
projects.  Grid technologies are service-oriented, and 
provide loose coupling between distributed 
applications. The Open Grid Services Architecture 
(OGSA) builds on Web Services. 

The Globus Toolkit [13] is the first initiative for 
building GRID infrastructure that can be used for 
general applications. The key components of Globus 
includes a Grid Security Infrastructure (GSI), 
providing security, a Monitoring and Directory Service 
(MDS), providing meta-information and broker 
functionality, and a Grid Resource Allocation Manager 
(GRAM), providing resource management in the Grid. 

Fig 1. MPICH-GQ architecture 

The MPICH-GQ API provided in GRAM is an 
extension of MPI which supports QoS reservations in
networks and other resources. 

GRID technology is still in its infancy, and there are 
many areas where further development must be made 
before it can be used in real-time and embedded 
systems. Support for end-to-end real-time performance 
is perhaps the most important. Energy and memory
footprint requirements are other important aspects that
need to be considered. 

[This part will be expanded in a future version]

4.  Use of distributed systems 

Within the field of distributed computing there are 
some established truths and beliefs about the use of 

distributed system technologies in embedded systems. 
It light of recent advances it may be time to revisit 
some of these. 

4.1 Processing requirements 

Embedded systems are often implemented with as 
little resources as possible, thus the application(s) need
to have a small memory footprint as well as low 
processing requirements. Microcontrollers or 
computers with very limited resources are typically 
used, thus reducing cost of components as well as 
energy consumption during operation. 

On the other hand, middleware technologies and 
distributed operating systems require extra processing 
and communication overhead, due to their general
nature. In general, it has not been feasible, or at least
considered prohibitively difficult, to use distributed
architectures such as CORBA in most embedded 
systems. 

However, in recent years the microcontrollers and 
industrial computers that are being used have become
more powerful and versatile. Today a microcontroller 
may be equipped with a TCP/IP stack, have multi-
threading capabilities, and fulfill all the requirements 
that are necessary for distributed computing. 

4.2 Real-time requirements 

There are often real-time requirements in embedded 
applications, especially within the industry, where the 
failure of a process to reach its deadline could lead to 
possibly catastrophic failures. Whereas the focus in
distributed and parallel computing is on providing best
effort service and maximum throughput, the focus in
real-time systems is on determinism and predictability. 

Middleware architectures have had a lack of focus 
on real-time requirements, and although there are 
exceptions, e.g. TAO [11], widespread use of these has 
not yet taken place in embedded systems. 

There is an ongoing effort to improve the real-time 
properties and QoS support in middleware systems. 
This research is especially driven forward by the need 
to support multimedia streaming, e.g. used in video 
conferences and VoIP applications. Multimedia 
services are also important in industrial networks, and 
advances in this field will probably automatically be
used in other applications as well.
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Fig 2. Distributed multimedia in the home 

4.3 Security requirements 

The importance of network security has become
more evident in recent years. The proliferation of 
wireless network technologies has contributed to this, 
along with outside threats such as hackers and 
potential terrorists. 

It is unacceptable for the average consumer to have 
the networked video player controlled by the neighbor, 
just as it is unacceptable to have unauthorized access 
to the industrial network of a plant. Thus, security
should play a fundamental part in the distributed 
system, from the early design stages and throughout
the development lifecycle. 

In earlier middleware solutions security was often 
treated with less consideration, but in modern
middleware platforms, e.g. CORBA and J2EE, this has 
changed. 

The security meta-model specified in CORBA 
comprises several security models and techniques, 
while other platforms, such as J2EE or .Net can be 
seen as providing a subset of the CORBA security
model, providing security through their environments
and APIs. 

Code-based access control gives permissions at the 
code level to access of resources, whereas role-based 
access control (RBAC) gives permission to a user to 
access resources based on the user’s role.

There is a need for general and universal methods 
to provide authorization and authentication in all levels
of the distributed architecture. Relying on different
methods for authentication and security within the 
same system will most often lead to problems. To
ensure security it is common to rely on a central Public 
Key Infrastructure (PKI). 

Secure communication is often implemented using 
Secure Sockets Layer (SSL) and Transport Level 
Security (TSL). 

The Grid Security Infrastrucure in the Globus 
Toolkit supports message-based and transport-based 
(TLS) security. In the future it is likely that RBAC will 
be supported. RBAC is especially important for 

enforcing security in large distributed systems, 
whereas for smaller systems it might not be necessary 
to enforce security from a user perspective. 

5. The future for DRE systems 

A problem with distributed real-time and embedded 
systems (DRE) is that these systems typically have a 
long life-span, and are built with a number of different, 
possibly proprietary technologies. As the systems 
evolve and new services are introduced, it becomes 
increasingly difficult to adapt and maintain these 
systems, using traditional software design. 

For solving this problem a new software paradigm, 
model driven middleware [MDM], is being developed 
to help develop and integrate DRE systems. There is
an ongoing effort to apply this way of thinking, which 
seems promising. 

Furthermore, we would like to ask the question: Is 
there really a need to have a distinction between what 
we refer to as middleware and the internals of a 
distributed operating system? The distinction may be 
more related to perception than to the technical nature 
of the solutions. However, any such solution will need
information about the distributed system to be present,
i.e. meta information.

5.1 Meta information 

This information is an important property of the 
distributed system. The information about the system
could be centralized, and catalogue services used to
look up who’s where, doing what, and assign resources 
for applications.  

Earlier, such services have been rather “heavy”, 
both in terms of processing cost and labor in order to
get them up and running. Today it is possible to
implement these services, since we have enough 
computing power and resources available. There is 
need for a standard to establish these services 
universally. 

In the Globus Toolkit this information is handled 
through the Monitoring and Directory Service (MDS). 
The implementation of the MDS in GT2 was based on 
the Lightweight Directory Access Protocol (LDAP), 
while XML is used in version 3 of the toolkit.

XML descriptors are also being used to describe 
QoS requirements within newer initiatives in
middleware, e.g. the CoSMIC MDM toolsuite [14].  

In general, XML provides a portable and extensible
data format that is now widely accepted, and is 
commonly used for data representation, e.g. in MS
Office. Therefore it seems like a natural choice for 

48



expressing meta information in a distributed 
heterogeneous environment.

6. Conclusion 

Embedded and real-time systems are becoming 
powerful enough, in terms of processing capacity, to
support technologies for distributed architectures, 
which may enable fault-tolerance and load-sharing for 
applications. 

However, for some of these technologies there are 
still shortcomings, especially with regard to real-time 
and QoS support. Security also needs to be handled 
consistently on all levels of the system, and a common 
platform should ideally be agreed upon. 

The system needs all the necessary information to 
be available. Further research should work towards 
widely adopted standards, in order to fulfill the vision 
of cooperative distributed systems. Middleware or 
distributed operating systems lack the necessary
capabilities for this to happen.

[This part will be expanded in future: 
necessary system capabilities are not there (yet) 
need for widespread standards for meta information 
also: service location 
]
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Transcript from the discussion

Q (AS to everyone..): What do we want? What do we believe we will see in the future?
And how does this influence YOUR particular field of work?

Shi: In embedded system, there wil be more chip space?  
Limit on comuputer resources will not be a problem. I think we basically agree, 

Kone: If I look at my field, it is interesting to consider a human specific language?
Ries: Some non-distributed issues are not solved.
The ideas put forward implies tremendous overhead.  It makes sense when not using CORBA,, but there
is (will always be) need for several protocols.  Power consumption is a limitation!

Reliability issues?
Risks associated.  Security is often not considered in industrial applications, which can be a problem.
Features not considered safety critical becomes safety critical because people rely on them

There was some confusion about proper frameworks to model/store the meta information in the system.
This is an important issue: Which information should every device have, and what should be shared?
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Abstract

In dependable embedded systems, it is current prac-

tice to assign each application subsystem to a dedi-

cated processor. However, several activities aim at an

integrated approach, allowing the deployment of mul-

tiple application subsystems on a single distributed

computer system [1]. The resulting large number of

feasible allocations of tasks to processors makes it

hard for the developer to determine an optimal solu-

tion, and therefore automatic allocation is desirable.

This paper presents an allocation algorithm that takes

advantage of the existence of replicated software and

hardware components in dependable embedded sys-

tems and the resultant symmetric solutions in order to

minimize the number of allocations taken into consid-

eration.

1. Introduction

More and more functions in today’s cars are real-

ized by embedded computer systems. Eventually, even

highly safety critical mechanical and hydraulic control

systems will be replaced by electronic components.

The DECOS project [2] aims at making a significant

contribution to the safety of dependable embedded

systems by transitioning from federated to integrated

systems [1]. In federated systems, each application

subsystem is located on a dedicated processor. The

federated approach provides natural separation of ap-

plication functions, but causes increased weight and

cost due to resource duplication and the large number

of wires and connectors. Integrated systems not only

help to alleviate this problem, they also permit commu-

nication among application functions. A remarkable

feature of the integrated DECOS architecture is that

hardware nodes are capable of executing several tasks

of application subsystems of different criticality.

1 Research supported in part by EC IST FP6 IP DECOS No. 511764

Throughout this paper, we will use the notion of a node

instead of processor.

An integrated architecture provides a fixed number

of nodes, each of which has certain properties (e.g.,

size of memory, computational power, I/O resources).

All tasks have to be allocated such that given functional

and dependability constraints are satisfied. The alloca-

tion of tasks to nodes can have a strong impact on the

result of the assessment of the concrete allocation.

Which allocation is deemed optimal depends on an

optimization function which assigns a cost value to

every solution.

Such allocation problems are commonly denoted as

Constraint Satisfaction Optimization Problems

(CSOPs) [3]. This class of problems has been subject

of research for several decades, and a great number of

solutions has been established [3, 4]. While such highly

general algorithms are usually a good first approach,

the exploitation of problem-specific features can result

in a significant reduction of the complexity of the prob-

lem. In this paper we explain why replicated compo-

nents, which are indispensable in safety critical sys-

tems, make the allocation problem easier.

2. Related Work

The number of contributions related to CSOP is

overwhelming, and it is impossible to give a complete

overview of this field. Several efficient heuristics for

the allocation problem are presented in [5], but the

main focus of this work is on the assessment of the

goodness of a mapping. Symmetry resulting from

equivalent processors has already been considered for

scheduling of embedded systems in [6]. A method for

handling symmetry during search is described in [7].

Furthermore, it should be noted that exploitation of

symmetry is a standard technique in the related area of

Model Checking [8]. Our approach aims at reducing

the search space by taking advantage of the fact that

equivalent redundant elements (i.e., replicas) exist. We
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are not aware of any publication that relates symmetry

and replicated components.

3. Formal Definition of the Problem

A Constraint Satisfaction Problem (CSP) consists of

a finite set of variables Z, each of which can be as-

signed a value from a corresponding finite domain D.

The set of valid assignments is restricted by a number

of constraints C. Constraints are relations ranging over

a set of variables and their values. Assignments under

which at least one of the constraints is violated (i.e.,

evaluates to false) are invalid.

A CSOP is composed of a CSP augmented by an

optimization function f that associates each assignment

with a numerical value. The goal of a CSOP is to de-

termine the assignment with the optimal value of f. The

optimization function f indicates the “goodness” of a

solution by assigning higher values to better solutions.

A CSP (or CSOP) is satisfiable if (and only if) a

valid assignment exists. An algorithm for a CSP (or

CSOP) is complete if (and only if) it finds every valid

assignment. An algorithm is sound if every result that it

returns is indeed a valid assignment.

Resource allocation problems (as the one presented

in Chapter 1) are CSOPs. Such problems are in general

NP-complete [9], i.e. no polynomial time algorithms

are known. Remember that we want to assign tasks to

nodes. Each node can host more than one task, there-

fore, tasks will take the role of variables Z in the CSOP

defined above, and the set of available nodes will de-

fine the domain D for these variables. Assume that n

denotes the size of Z, and m is the cardinality of D. In

the worst case, one will have to consider m
n

assign-

ments to find the optimal solution, which is defined by

the optimization function f.

The number of valid assignments is restricted by

various constraints. Examples for constraints would be

dependability constraints (location of replicas, fault

containment), resource constraints (memory, computa-

tion resources, availability of sensors or actuators on a

certain node, bandwidth), and performance constraints

(deadline, precedence). To prevent loss of generality,

we do not make any assumptions about the nature or

representation of constraints in this paper. Depending

on the allocation algorithm and the constraints, it is

often necessary to consider a large number of partial

assignments before the search tree can be pruned.

4. Optimization using Equivalence Classes

This chapter outlines the optimization which we

propose. In a safety critical system, replicas are intro-

duced to increase reliability. Replicas are redundant

elements with equivalent properties, e.g. an exact copy

of a job running on a different node. Since such redun-

dant elements share the same attributes, they are inter-

changeable with respect to the constraints and the op-

timization function f. Consider a system with two nodes

a1 and a2, and two replicated tasks j1 and j2. The map-

pings m1: { j1 ← a1, j2 ← a2} and m2: { j1 ← a2, j2 ←

a1} are equivalent with respect to the evaluation of the

constraints and the optimization function f. m1 and m2

are redundant, i.e. only one of them has to be consid-

ered.

Furthermore, nodes may be considered as equivalent

if they are of the same type and provide the same re-

sources. The impact of equivalent elements in the do-

main D on the performance of the search algorithm is

not as significant as the impact of task replicas, but

experiments have shown that the gain is still worth the

additional effort.

In order to take advantage of the existence of

equivalent tasks and nodes the sets of equivalent ele-

ments have to be computed. The complexity of this

problem depends on the representation of the con-

straints and the optimization function f. It is impossible

to propose a generic approach for solving this problem.

The deduction of equivalence sets is trivial if the con-

straints and the optimization function depend solely on

the attributes (e.g., memory demands or size, computa-

tional power) of the elements. In that case, equivalence

sets can be inferred by simply comparing these attrib-

utes. An even more trivial case would be if tasks are

actually tagged as replicas. If constraints are given in

First Order Logic [10], for instance, it might be neces-

sary to use more complex methods like term rewriting

[10] to identify the equivalence sets. However, it

should be mentioned that completeness of the algo-

rithm used to compute these sets is not a necessary pre-

condition: If the equivalence of an element remains

undetected, the search algorithm will perform less effi-

cient, but it is still sound and complete.

5. Commonly Used Search Algorithms

We present two well known search algorithms, one

of which we will later on optimize by applying the con-

cept outlined in the previous chapter. We assume that

the search space is bounded and represented as a rooted

tree graph (i.e., a tree graph with a distinct root vertex).

This assumption is hardly restrictive, but eases argu-

mentation. Each inner vertex represents a partial as-

signment, and leaves represent complete allocations.

Each vertex except the root vertex has one incoming

edge. Each vertex except the leaves has m>0 outgoing
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edges. An edge represents an allocation of a task to a

node. We denote a sequence of vertices such that there

is an edge from each of its vertices to the successor

vertex, with each vertex occurring only once in the

sequence, as path. The maximum length of a path is n.

“Depth First Search” (DFS) algorithms explore one

individual path after another. Starting with the root

element, each path is successively extended until either

one of the constraints is violated or a valid assignment

has been found. In case of a constraint violation, the

algorithm backtracks to the vertex visited last and fol-

lows an edge that is different from the one that led to

the constraint violation.

“Breadth First Search” (BFS) algorithms start at the

root element and successively explore all neighbors of

the vertices that have already been visited. Whenever a

constraint is violated at a vertex, the corresponding

subtree is pruned.

BFS as well as DFS algorithms are uninformed

search algorithms and have equal time complexity if all

valid solutions have to be generated. More sophisti-

cated approaches use heuristics, aiming at considering

more promising paths first. The optimization we pro-

pose is orthogonal to the above mentioned methods, i.e.

it can be applied to improve DFS and BFS as well as

other search algorithms.

6. Applying the Optimization to DFS

Let us demonstrate, based on DFS, how a single al-

location step is performed. In DFS, the task variables

j1, ..., jn are considered one after another, and we as-

sume that the variable currently processed is ji. ji is as-

signed a1, and if no constraints are violated, the algo-

rithm proceeds to ji+1. Otherwise, a2 will be considered

as node running ji. If all assignments to ji yield a con-

straint violation, the algorithm will have to backtrack

and consider different nodes for ji-1. If the allocation

problem is satisfiable, the algorithm will sooner or later

yield a valid allocation.

Now, consider that the n tasks j1, ..., jn have been

partitioned into k equivalence sets J1, ..., Jk. The nodes

a1, …, am have been partitioned into l equivalence sets

A1, ..., Al. The equivalence sets J1, ..., Jk are considered

one after another. Assume (without loss of generality)

that Ji contains r tasks j1, ..., jr. The first element j1 ∈ Ji

is allocated on a1 ∈ A1. If no constraints are violated,

the algorithm has to perform following two actions:

1. Remove j1 from Ji, since j1 need not be consid-

ered again.

2. Check which attributes of a1 have changed due

to the assignment. For instance, the amount of

available memory and computation resources

will have changed, since j1 consumes at least

some of these resources. Therefore, it is neces-

sary to place a1 in a different equivalence set,

or, if a1 fits into none of the existing equiva-

lence sets, to create a new equivalence set A1
+

that contains only a1. In the latter case, A1
+

is

added to the other node equivalence sets, thus

increasing their number by one.

If the assignment j1 ← a1 results in a violation of at

least one constraint, the algorithm tags A1 as “consid-

ered for Ji” and proceeds with considering the next

equivalence set of nodes. If all equivalence sets have

been considered, the algorithm has to backtrack similar

to the simple DFS approach.

The pseudo-code for the optimized allocation algo-

rithm is presented in Listing 1. The code shows a DFS

algorithm that has been optimized using equivalence

sets. We will further on refer to this algorithm as

“Equivalence-Set based DFS” (EDFS). The proposed

optimization can be applied to other search algorithms

like BFS or algorithms that use heuristics in an analo-

gous way.

7. Complexity Analysis

As mentioned above, the worst case execution time

for a resource allocation problem is of exponential or-

der. In our case, this means that m
n

assignments would

have to be considered. It is obvious that EDFS behaves

like DFS if each equivalence set contains exactly one

element (at least if one does not consider the overhead

for handling equivalence sets). This is not surprising,

since resource allocation remains an NP-complete

problem.

Obviously, the larger the equivalence sets become,

the better is the performance of EDFS (in other words,

EDFS performs better for a small number of equiva-

lence sets). As suggested above, we assume that we

have n tasks which are partitioned into k equivalence

sets, and m nodes partitioned into l equivalence sets.

Let W(i, ri, si) denote the worst case number of as-

signments that EDFS needs to process for one task

equivalence set. ri is the cardinality of the current task

equivalence set, and si denotes the number of current

equivalence sets of nodes. Then, in the worst case,

EDFS has to consider at least

Ο ii

k

i

ii JrsriW =∏
=

with),,(
1

partial allocations, i.e. the runtime of the algorithm is at

least exponential in k. In Listing 1, the task equivalence

sets J1 to Jk are considered one after another. Since the

order of tasks within each equivalence set Ji does not
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matter, the term W(i,ri,si) can be approximated by ap-

plying the formula for combinations with repetition.

Repetitions are allowed, since even if one task of the

current task equivalence set has been assigned to a cer-

tain node, this very node is in general still available for

the assignment of an additional task from the same set.

This fact is reflected by the variable .

Obviously, ri is the number of elements to be cho-

sen. Estimating the number of objects from which one

can choose is slightly more complex: The number of

equivalence sets for nodes at step i is hard to predict,

since it depends on whether the algorithm was able to

reintegrate nodes into the existing equivalence sets

after allocating tasks to them. The worst case is that the

number of equivalence sets for nodes reaches m after

(m-l) assignments, since we have to assume that each

assignment generates a new node equivalence set Ai
+
.

This implies that node equivalence sets make no sig-

nificant contribution to the improvement of the com-

plexity – in the worst case. The effort for reintegrating

nodes into the existing equivalence sets is linear in the

number of nodes, since the node has to be compared to

at most (m-1) other nodes.

The number of ways to choose k elements from a set

of n if repetitions are allowed is
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Listing 1: Pseudo-code for EDFS

54



The worst case execution time of EDFS depends on

a multitude of parameters, namely the number of task

equivalence sets, the cardinalities of these sets, and the

number of processors. Most of these parameters are

irrelevant for the runtime of the simple DFS algorithm.

Therefore, it is impossible to provide a general com-

parison the efficiency of DFS and EDFS. As mentioned

above, DFS and EDFS perform equally well if there are

no equivalent elements (aside from the overhead of

EDFS, which will be discussed in Chapter 9).

The example and the experimental evaluation pre-

sented below will underpin the superiority of EDFS

over DFS.

8. Example

In this section we present a small but still realistic

example of an embedded system and explain how

EDFS is more appropriate for the task allocation than a

brute force DFS approach.

We consider a Steer-By-Wire system consisting of 7

tasks. The system provides a “Driving Assistant” that

recognizes critical driving situations, prevents over-

steering and takes countermeasures if the driver steers

too sharp. The system comprises following modules:

1. Driver_Assistant: Receives its input from sen-

sory data sources and adjusts these values (if

necessary) in order to keep the car safely on

course.

2. Steering_Algorithm: Determines the analogue

value that is used to control the mechanical

steering system (under consideration of the an-

gle of the steering wheel and the actual turning

angle of the wheels).

3. Steering_Rack_Sensor: Provides information

about the forces that affect the mechanical

steering system.

4. Steering_Rack_Control: Controls the turning

angle of the wheels using the values provided

by the steering algorithm. If the task that real-

izes the steering algorithm is defunct, the steer-

ing rack control uses the raw data provided by

the sensory tasks.

5. Force_Feedback: Provides haptic feed-back to

the driver.

6. Turning_Angle_Sensor: Measures and provides

the current angle of the steering wheel.

7. Speed_Sensor: Measures and provides the cur-

rent speed of the vehicle.

For reasons of simplicity, we assume that each

module is realized by a single task. Tasks have to be

replicated if their breakdown could potentially jeopard-

ize the safety of the driver. In our example, this is the

case for the Steering_Rack_Control task, the Turn-

ing_Angle_Sensor task, and the Speed_Sensor task

(see Table 1). Due to replication we have to consider

an overall number of 10 tasks. In order to prevent com-

mon mode failures, task replicas must not be located on

the same node. This requirement can be expressed as

constraint that limits the number of valid allocations.

Task Time Budget Number

Turning_Angle_Sensor 270 2

Speed_Sensor 270 2

Steering_Rack_Control 130 2

Steering_Rack_Sensor 110 1

Steering_Algorithm 110 1

Driver_Assistant 270 1

Force_Feedback 110 1

Table 1: Time budgets of Steer-By-Wire tasks

We aim at distributing the tasks over 4 nodes. In our

simple example we assume that all nodes can be

equipped with the required sensors. In practice, it

would be possible to further restrict the valid alloca-

tions by means of constraints. Two of the 4 nodes have

sufficient memory resources such that each of them can

run 3 tasks. The memory resources of the remaining

two nodes are chosen such that only two tasks can be

hosted. Each of the nodes is assigned a time budget of

600 “units”. Table 1 associates each task to a time

budget that is required to execute the corresponding

code.

According to the results of the complexity analysis,

the worst case of a non-optimized search algorithm

would be that 4
10

(=1048576) allocations have to be

considered. The experimental evaluation below will

show that even the brute force DFS algorithm considers

only a fraction of these solutions.

The computation of the worst case for EDFS is

slightly more complicated. We have to consider 7 task

equivalence sets, 3 of which contain two tasks, while

the remaining sets contain only one single task. Fur-

thermore, we start with two node equivalence sets.

In the first step, we have to consider that the num-

ber of node equivalence sets is potentially increased by

one whenever an assignment of a task to a node is per-

formed. We will approximate this fact by assuming that

there are 3 node equivalence sets for the first task

equivalence set.

6
)!13(!2

)!123(
),,1( 11 =

−

−+
=srW

under the assumption that r1=2 and s1=3. For the sec-

ond and third task equivalence set we have to presume

the existence of 4 node equivalence sets:
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with r2=2 and s2=4. W(3, r3, s3)=10 follows from the

same considerations. EDFS performs equally to DFS

for the remaining 4 task equivalence sets, which con-

tain only a single element, since
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Therefore, EDFS considers 6*10
2
*4

4
= 153600 al-

locations at most, i.e., in the worst case, the algorithm

performs approximately 7 times better than search

without optimization.

9. Experimental Evaluation

We have implemented a DFS as well as the EDFS

algorithm presented in Listing 1 in the OCaml [11]

programming language. The DFS algorithm yields all

valid allocations, while EDFS generates only one rep-

resentative for each set of symmetric solutions. A com-

plete list of valid allocations could be gained by gener-

ating all permutations under consideration of the

equivalence sets. In practice, this will not be desirable

since the optimization function f is indifferent to sym-

metric solutions, and considering all valid allocations

would be a pointless effort.

We measured the efficiency of the algorithms by

counting the number of partial assignments that are

considered. The constraints have to be evaluated for

each partial assignment, and if we assume that this

evaluation takes a significant amount of time, this value

is a good indicator for the improvement. According to

our measurements, the overhead for handling the

equivalence sets amounts for about 15 to 20% of the

runtime. We believe that this number can be improved

significantly, since we used a purely functional pro-

gramming style and we did not apply any optimiza-

tions.

Our implementation of the DFS algorithm consid-

ered 15516 partial assignments before it yielded the

valid allocations for the Steer-By-Wire system pre-

sented above. The EDFS algorithm terminated after

considering only 797 partial assignments, exceeding

the expectations from the previous chapter. (The reason

for this improvement is that the worst case did not oc-

cur, presumably due to early truncation of several

branches of the search tree and due to the fact that our

worst case considerations explicitly excluded reintegra-

tion of nodes into equivalence sets.)

Apart from the Steer-By-Wire example, we have

made several experiments that underpin our assumption

that EDFS performs better than DFS in many cases. In

the worst case (n=k and m=l, i.e., all equivalence sets

contain exactly one element) EDFS degenerates to

DFS. Table 2 presents the results of some of these ex-

periments. The 3
rd

line presents the worst case where

EDFS and DFS perform equally due to the absence of

equivalence sets.

n m k l DFS EDFS

10 4 7 2 15516 797

10 10 5 5 14308950 77911

10 10 10 10 223742 223742

8 4 4 2 768 33

Table 2: Experimental evaluation of EDFS

The actual number of partial allocations considered

by EDFS and DFS depend on many more parameters

than shown in Table 2. For example, strong constraints

can result in an early truncation of branches of the

search tree. Furthermore, the ordering in which the

variables are considered and the ordering in which the

values are assigned has a tremendous impact on the

efficiency of the search algorithm [3]. For the Steer-

By-Wire example, we were able to find variable order-

ings make DFS and EDFS perform significantly better.

In general, finding an optimal ordering for the variables

is infeasible, since even checking that a particular or-

dering is optimal is NP-complete [8].

Note that the usage of the equivalence set based op-

timization does not rule out other optimizations like

variable ordering heuristics. A great number of sugges-

tions for generic optimizations can be found in [3].

10. Conclusion

Whether the effort to consider equivalence sets is

worthwhile depends on the concrete application of the

algorithm. The potential symmetry caused by the exis-

tence of replicas makes dependable embedded systems

an ideal field of application, and our experiments show

that EDFS performs much better than non-optimized

search algorithms. As mentioned in the previous sec-

tion, the proposed optimization can easily be combined

with other optimization approaches. The approach will

be considered for software/hardware integration [12]

within the DECOS project [2].
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Transcript from the discussion

Q(Ian): it's a space search for optimal solutions. Can you 
A: It's a matter of comparing with the best solution so far.
Heuristic approach.
Evaluation of the optimal solutions 

Q(A): actually it is a problem with several electronic
subsystems in cars, because they fail
A: several problems with several electronic systems.
Cost, heat dissipation.
Scaling is important, as can be seen in case of Airbus
A380.
Problem with integrated architecture could be with
locating the faulty part(s), when something fails.

Q(Shi): does approach apply to safety critical only, or?
There's no limitation on the method for this.

Q: is there need for a MMU for the OS, applications on
the platform?
specification 

Q: can be 
Used also for industrial control, avionics, automotive and
lots of applications
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Abstract

Serial replication structures are used in fault tolerance
mechanisms in systems. Analysing the timing behaviour of
systems using these mechanisms can be difficult, however, it
is necessary to do this kind of analysis if the systems are to
be used in real-time applications.

In this paper, two ways of analysing the timing behaviour
in such systems are studied, a simulator and an analytical
model. Some of the strengths and weaknesses of these meth-
ods are discussed, and it is demonstrated with an example
how they can be used.

1. Introduction

Many of today’s real-time applications will, in addition
to the timing requirements, also have reliability require-
ments. It is therefore important to study the combination of
real-time and fault tolerant systems. A fault tolerance mech-
anism may be able to detect and correct a number of faults,
however, in a real-time system, it is possible that the same
mechanism introduces new faults if the time it uses for de-
tection and correction causes the system to miss a deadline.
Because of this, a fault tolerant mechanism may give very
little improvement to the reliability of a system, depending
on the system’s characteristics.

For many real-time systems, it has been common to use
a parallel fault tolerance structure, that is, several replicas
of one object are run simultaneously. This will give a de-
terministic temporal behaviour even if a fault is detected
in one of the replicas, and comparision of the results from
the different replicas can be used as an extra fault detection
mechanism. On the negative side, parallel fault tolerance
mechanisms needs extra resources.

In a system using a serial fault tolerance structure, only

one instance of an object is active at one time, while the
other replicas are passive. If a fault is detected, the task
running on the object is stopped, and one of the passive
replicas is made active. The task is then rerun on this new
active object. The mechanisms based on serial structures
use fewer resources than those based on parallel structures,
making them quite popular in general purpose systems. In
real-time systems, the time used for detecting a fault, up-
dating the states of the replica, and rerunning the task may
cause deadline misses. When considering a fault tolerance
mechanism based on a serial structure for a real-time sys-
tem, it is therefore important to analyse the time used by
such a system.

In this paper, two main methods of analysing the timing
behaviour of a fault tolerant system are presented: Analyti-
cal models of the behaviour, and simulation.

Analytical models give precise results, and once a model
is developed for a system, the same model can often be
used with little or no modification in similar systems. How-
ever, the mathematical expressions can become quite com-
plicated, even for a simple system, and such models are
therefore not always easy to understand or use.

Simulation may give good results, and is often easier to
understand and use than analytical models. A problem with
simulations is that they have to be run a large number of
times if events with a low probability of occuring are to be
studied.

2. The model of the fault-tolerant system

The system that we are modelling is a simple Client-
Server system where the server is using a fault tolerant
mechanism based on a serial structure. The model we are
using for the fault tolerance mechanism is based on the cold
and warm passive replication methods described in Fault
Tolerant CORBA [3].
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Figure 1. Timing behaviour of system during
a fault

In the system, there is one active primary object and sev-
eral passive secondary objects. The state of the primary ob-
ject is logged, and if the primary object fails, the state of
one of the secondary objects is updated from the log. This
object will now be the new primary, and the task that was
running on the failed object will be rerun.

In the system, fault detection is based on some kind of
watchdog mechanism. A fault detector will either ask the
primary object if it is “alive”, or the primary object will
generate “heartbeats” that the fault detector will listen to.
In both cases, if the fault detector doesn’t get a response in
what is considered a reasonable time, it is assumed that the
primary object has failed, and the fault correction mecha-
nisms will start to work.

When a fault is detected, the fault correction mechanism
will prepare one of the secondary objects by updating its
state from the log. When the object is up to date, the task
that was running will be rerun on it. The timing behaviour
of the system in a case where a fault occurs is shown in
figure 1.

We also have to consider cases where several faults oc-
curs during the service of one task.

If a new fault occurs after the correction of the previous
fault has started, the whole detection-correction-rerun cycle
has to be restarted. However, if the fault occurs before the
previous fault is detected, it will have no extra effect on the
system, since it is still the already faulty object that is active.

3. The Analytical Model

The analytical model we use is the one presented in [4].
The expressions are derived using a method similar to the
one used to find the distribution of the busy period in queu-

ing systems, as presented by Kleinrock in [2].
In the expressions, we use the moment generating

functions (mgf) of the different distributions. A dis-
tribution’s moment generating function is the laplace
transform of its probability density function (pgf), i.e.
F(s) =

∫ ∞
0

e−stf(t)dt.
In this paper, we use calligraphic letters (i.e. F(s)) to

represent a distribution’s moment generating function and
normal lowercase letters (i.e. f(t)) to represent the distri-
bution’s probability density function.

The model gives us the moment generating function,
G(s), of the run-time distribution for a fault-tolerant sys-
tem based on a serial structure as a function of the moment
generating functions of the fault-free run-time, the fault de-
tection and correction times and the fault intensity. Mathe-
matical tools may then be used to transform the mgf back to
the time domain.

We assume that the time used to run a fault-free method
is given by the pdf m(t), the time used to detect faults is
given by the pdf i(t), and the time used to correct a fault (i.e.
updating the state of a passive object and restarting method
on this object) is given by the pdf c(t), and that these distri-
butions have the moment generating functions M(s), I(s),
and C(s). We also assume that the faults are independent
and that fault arrivals can be modelled by a poisson process
with intensity λ.

Given these parameters, the mgf of the run-time distri-
bution in a system where faults may occur is given by

G(s)

= M(λ + s) +
( ∞∑

k=1

(
λ

λ + s

)k

I(ks)

( k−1∑

i=0

(−1)i

(
k − 1

i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

(1)
There is an infinite sum in the expression. This is ex-

plained by the fact that there always will be a possibility
that the system will fail again while a task that has failed
before is still running. This also makes it possible that an
infinite number of faults may occur during the running of
the same task. The infinite sum can be approximated to a
finite sum in two ways:

• Assuming that only a finite number N faults will hap-
pen during the run-time of one task, so that no new
faults will occur after this.

• Assuming that the task will fail if the number of faults
occuring during the running of one task exceeds N .
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The mgf for the first approximation is given by

G1(s)

= M(λ + s) +
( N−1∑

k=1

(
λ

λ + s

)k

I(ks)

( k−1∑

i=0

(−1)i

(
k − 1

i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

+
(

λ

λ + s

)N

I(Ns)
( N−1∑

i=0

(−1)i

(
N − 1

i

)

(M(iλ + (i + 1)s) −M((i + 1)λ + (i + 2)s))

C(iλ + (i + 1)s)
)

(2)
while the mgf for the second is given by

G2(s)

= M(λ + s) +
( N∑

k=1

(
λ

λ + s

)k

I(ks)

( k−1∑

i=0

(−1)i

(
k − 1

i

)
(M((i + 1)(λ + s))

−M((i + 2)(λ + s)))C((i + 1)(λ + s))
))

(3)
If there is a low probability that a fault occurs during

the running of a task, the probability of several independent
faults occuring during the same task becomes so small that
these approximations are reasonable. Also, since the sys-
tems we are analysing have deadlines, and each fault will
take some time to detect and correct, there can only be a
finite number of faults before we are guaranteed to miss the
deadline.

A difference between the two approximations is that the
first approximation models a system that will never fail
completely, while the second will always have a small prob-
ability that the running of a task is never finished.

4. The Simulator

The simulator is designed as a simple server-client sys-
tem, as shown in figure 2. For the system presented in this
paper, the network part is omitted.

4.1 The Client

In the system presented here, the client part of the sim-
ulator functions mostly as a generator of an object type
called process. At regular intervals, the client generates a

fault generator

fault generator

Observer

ServerServer

NetworkNetwork

Client

Figure 2. Structure of a simple client-server
simulator.
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Figure 3. Simplified state machine diagram for
the server model.

new process object, which is time-stamped and sent to the
server. When the network part of the model is used, it also
receives process objects that are returned from the server,
time-stamps them, and sends them to the observer.

4.2 The Fault Generator

The fault generator is a “pure” generator that creates
fault objects at intervals drawn from a negative exponential
distribution. These are sent directly to the server.

4.3 The Server

During normal operation, the server function is quite
straightforward. When a process object arrives, it is placed
in a queue. If the server is idle when this happens, or if it has
just finished a service while the queue is not empty, it will
take the next object in the queue. It will then set its status to
busy, draw a service time from the service time distribution,
and set the next event to happen when this time is up.

When a fault object arrives, the server will set its status to
error, draw a time from the detection time distribution, and
set the next event (i.e. the fault detection event) to happen
when this time is up. When the fault is detected, the server
sets is status to correction and draws the time to the next
event from the correction time distribution. After the fault
is corrected, the server returns to busy, and restarts service
on the process object by setting the next event to happen
after the service time.

A simplified state machine diagram for the server is
shown in figure 3

4.4 The Observer

The observer receives process objects that has finished
running. The data from these objects are extracted and pre-

sented in a way that a program used for data analysis can
read.

4.5 Implementation

The simulator is implemented in C++, using the ADEVS
discrete event simulator framework [1] as a base. For data
analysis, Matlab is used.

5. Example

We will now look at the results from the mathematical
model and the simulator for a simple system.

5.1 System parameters

For the fault free running time, we have chosen a trian-
gular distribution with minimum time 6, maximum time 10
and the mode at 8.

m(t) =





0 , 0 ≤ t < 6
t−6
4 , 6 ≤ t < 8

10−t
4 , 8 ≤ t < 10

0 , t ≥ 10

(4)

The fault detection time is uniformly distributed with a min-
imum time 1 and a maximum time 3.

i(t) =





0 , 0 ≤ t < 1
1
2 , 1 ≤ t ≤ 3
0 , t > 3

(5)

The fault correction time is uniformly distributed with a
minimum time 0 and a maximum time 5.

c(t) =
{

1
5 , 0 ≤ t ≤ 5
0 , t > 5 (6)

These distributions have the following moment generating
functions:

M(s) =
e−6s − 2e−8s + e−10s

4s2
(7)

I(s) =
e−s − e−3s

2s
(8)

C(s) =
1 − e−5s

5s
(9)

The mean time between faults is set to 10000.
The maximum number of faults during the run of one

method for the analytical model is set to 2. While this may
seem like a very small number, the effect of modelling more

62



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4. Results from the simulation and the
analytical model

faults in this system is very small, while it makes the expres-
sion much larger. Using equation 3, the mgf for the run-time
distribution for the system is found to be

G1(s) =
M(λ + s)
+( λ

λ+s )I(s)
(M(λ + s) −M(2λ + 2s))C(λ + s)
+( λ

λ+s )2I(2s)
((M(λ + s) −M(2λ + 2s))C(λ + s)
−(M(2λ + 2s) −M(3λ + 3s))C(2λ + 2s))

(10)

Since the inverse transform of the mgf will be quite com-
plicated, Matlab and Simulink is used to numerically trans-
form the results to the time domain.

The simulator is set to run 100000 tasks. Matlab is used
to evaluate and present the results from the simulator.

5.2 Results

We plot the cumulative density functions (cdf) of the fin-
ishing times, using the results from the simulator and the
analytical model together, as shown in figure 4. If we zoom
in on the plot as in figure 5, we can se that the analytical
results (solid line) and the simulator results (dashed line)
follow each other quite closely, with an exception in the
area around t = 20, where the simulator results show a
somewhat lower probability of finishing at this time than
the results from the analytical model. The curves also show
the cdfs of a non-faulty system (top dotted line) and a non-
fault-tolerant system (bottom dotted line).

The graphs clearly shows that the improvement caused
by the fault tolerant mechanism is almost negligible if the

10 12 14 16 18 20 22
0.998

0.9985

0.999

0.9995

1

1.0005

Figure 5. Details of results from the simula-
tion and the analytical model together with
the fault-free and non-fault-tolerant distribu-
tions

deadline is close to 10, while the improvement is quite good
if the deadline is around 20.

The results can be used to determine the probability that
a task with a deadline will succeed or fail. If, for instance,
we set the deadline to 20, the probability of a failure is
1.2 · 10−4. Had there been no fault tolerance mechanism,
this probability would have been 8.0 · 10−4.

By changing parameters, we can see how the fault detec-
tion and correction times affect the system. As an example,
we add 5 to the fault correction time, so it is uniformly dis-
tributed between 5 and 10:

c(t) =





0 , 0 ≤ t < 5
1
5 , 5 ≤ t ≤ 10
0 , t > 10

(11)

C(s) =
e−5s − e−10s

5s
(12)

The results are plotted with the earlier results in fig-
ure 6, showing that the delay in fault correction times causes
the fault tolerant mechanism to be almost ineffective if the
deadline is 20 or less.

6. Discussion and conclusion

In the models presented here, we assume that all faults
are independent, and we also only model faults that can be
detected and corrected by the simple fault tolerance mech-
anism described in section 2. In many cases this is good
enough for the analysis of a system.
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Figure 6. Results showing the effect of adding
a delay of 5 to the fault correction

If the behaviour of other fault classes, detection and cor-
rection mechanisms are known, expanding the simulator so
it is able to handle these, is, in most cases, not very diffi-
cult. The difficulty of expanding the analytical model varies
greatly, depending on how the faults affect the system and
how the detection and correction mechanisms work.

In this paper, two different ways of creating models for
the study of the timing behaviour of a fault tolerant real-time
system, the simulator and the analytical model, and how the
results from these can be used to find the failure probability
of methods running on this kind of system are shown.

Some of the strengths and weaknesses of these models
are discussed.

Both the simulator and the analytical models have the
potential to be expanded, so they can be used to study a
wider range of fault types, detection methods, correction
methods and fault tolerant structures.
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Transcript from the discussion

Q(Ian): You try looking at probability with discrete
markov models. Couldn’t you assign probabilities
to transitions and use derive analytical formulas
directly from the markov model
instead of Laplace functions?
A: I am more interested in the time: the time
between when a task arrives and when it finished,
more so than what particular state the system is in
at any time.

Q (Ian): You mention that the system lends itself to
doing other kinds of fault-tolerant strategies. Have
you considered using something with
checkpointing, what would the analytical model
look like?
A: One of the things that I’ve looked at is what will
happen if you have specific times where you can
check if there is a fault, because you won’t get the
same results. It will be somewhat easier because
in this model you can detect a fault at any time
while it’s running (more complex).
But we need to consider other fault detection
mechanisms, because there will be other fault
types and behaviours, and I’ve begun looking into
some of these. But I do not have results here.

Q(ES): If I was a user I would be interested in what
is the worst-case behaviour?
A: agrees
ES: An idea is to show more information about the
system, maybe in 3 dimensions, to make
comparisons, with respect to failure rate (lambda,
repair rates)? More instructive that way.
Another idea: perhaps introducing a coarse
algorithm to get atleast some results, to improve
dependability.
ÅT: plan to use short, imprecise algorithm for
results.
e.g. use a different algorithm/distribution for the
backup routine

64



ASSESSMENT OF SAFETY CRITICAL SYSTEMS WITH COTS SOFTWARE AND 
SOFTWARE OF UNCERTAIN PEDIGREE (SOUP) 

 
Torbjørn Skramstad1, 2  

 
1 Norwegian University of Science and Technology, NTNU, NO-7491 Trondheim, Norway, torbjorn.skramstad@idi.ntnu.no 

2 Det Norske Veritas Research, Veritasveien 1, NO-1322 Høvik, Norway, torbjorn.skramstad@dnv.com 
 

 
Abstract – Mission- and safety critical system designers are 
more and more forced to use a Commercial-Off-The-Shelf 
(COTS) approach due to more focus on cost and 
development times, even if COTS components normally are 
not specifically designed and developed for robust 
operation. Many safety critical systems have to be assessed 
or certified by independent organisations. This paper 
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meet when facing the assessment of such systems. 
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I. INTRODUCTION AND BACKGROUND 

Software-based systems replace older technologies in 
safety- and mission-critical applications. Software has found 
its way into aircraft engine control, railroad interlocking etc. 
New critical applications are developed, such as automating 
aspects of surgery, or steering and piloting of automobiles. 
Software has traditionally been regarded as non safety- 
critical, because humans using manual backup could take 
over if it failed. However, increased requirements to speed 
and volume mean that this fall-back capability is being 
eroded. Control systems are also becoming more and more 
complex.  

At the same time, due to economical reasons and pressure 
from the market to reduce development times the use of 
COTS, and sometimes older proprietary software of 
uncertain pedigree (SOUP), is increasing. These systems are 
taking over an increasing amount of safety-critical 
operational functions in many types of systems. This 
includes propulsion and steering systems on-board ships, 
engine control and braking systems on cars, and vital 
functions in medical devices.  

Imagine a large passenger ferry loosing steering control in 
the heavy populated British channel, or a Liquid Natural 
Gas carrier loosing propulsion in the narrow Bosporus 
sound. Ideally, the control system and the safety system 
should be independent systems. However, it is becoming 
more common to integrate these into the same system.  

II. WHAT IS A SAFETY RELATED FUNCTION 

A safety related function is a designated function that 1) 
implements the required safety functions necessary to 

achieve or maintain a safe state for the (EUC) Equipment 
Under Control (e.g. a ship or a car); and 2) is intended to 
achieve, on its own or with other E/E/PE safety-related 
systems, other technology safety-related systems or external 
risk reduction facilities, the necessary safety integrity for the 
required safety functions. 

The requirements to safety related functions will typically 
be: 1) the required reliability of the safety function (how 
often is it acceptable that the function fails); 2) critical 
required response time (what is the maximum time from the 
demand of a function to the successful actuation of the 
safety related function; 3) manual emergency handling is 
possible and procedures are available for handling 
functional failures of the safety related function within the 
necessary time frame. 

III. FUNCTIONAL SAFETY AND ASSESSMENT OF 
SAFETY CRITICAL SYSTEMS 

Safety standards [1] [2] [3] have requirements to the 
development as well as to the assessment and certification of 
systems that may endanger its users and the environment 
when failing. The objective of Functional Safety 
Assessment is to review whether the combination of safety-
related systems and external risk reduction facilities can 
achieve the overall safety requirements. Safety assessment is 
normally carried out by personnel who are independent from 
the design and test team. The level of independence depends 
on the phase of the life-cycle being assessed, the SIL of the 
system (see section IV for a definition of SIL), and the 
system’s complexity and/or its novelty. The SIL, or safety 
integrity level, is a number (1 lowest, 4 highest) indicating 
the required degree of confidence that the system will meet 
its specified safety features.  

IV. WHAT IS COTS AND SOUP? 

In a safety related context typical definitions of 
COTS/SOUP are: 1) ‘Software, the pedigree of which is 
unknown or uncertain, which could in any way affect the 
correct operation of a safety-related system’ [10], 2) 
‘Commercially available application sold by vendors 
through public catalogue listings. COTS is not intended to 
be customised or enhanced’ [2] . 
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Typical examples of COTS are: Operating Systems, 
Database Systems, Expert system shells, CASE Tools 
(Editors, compilers, GUI builders, Test tools), Libraries or 
other re-usable software, Application oriented packages, e.g. 
SCADA, Networking and communication software, Utilities 
(e.g. spreadsheets, word processors) etc. A hardware 
component may also be a COTS – however, the discussion 
of assessment of such COTS are outside the scope of this 
paper. 

V. THE DILEMMA OF THE ASSESSOR 

The most common safety standards, such as IEC61508 [1], 
DO-178B [2], and EN50128 [3], have strict requirements to 
how software should be developed and tested (for IEC61508 
also requirements to hardware). None of these standards 
explicitly allow the use of COTS (or SOUP) in safety 
related applications. The reason for this is that one can not 
demonstrate that the safety requirements to development, 
testing and maintenance have been met. In addition the 
configuration status of a COTS is often uncertain. In order 
to use COTS in subsystems the supplier has to enforce a 
system architecture that is robust and reliable enough to 
fulfill requirements, and this has to be demonstrated by risk 
analyses or similar, such as FMEA, Fault Tree Analysis, 
Event Tree Analysis, Common Cause Analysis and software 
HAZOP. Such a robust architecture could be obtained by 
introducing redundancy by e.g. having diverse COTS, that 
is, COTS subsystems with the same functionality, but 
developed by independent teams. For an operating system 
e.g. this would mean that the supplier would have to supply 
sufficient evidence for diversity between to diverse OSs and 
the reliability of each the OSs such that the required SIL 
level is obtained at system level.  

Assessment of COTS software in safety related systems is 
treated in several papers [10] [11] [14] [15]. 

VI. HOW TO DEAL WITH COTS SOFTWARE? 

COTS may fail in many different ways depending on the 
type of COTS. Typical examples are, a) the software 
component delivers wrong output; b) the COTS function is 
not carried out sufficiently fast, e.g. the COTS may be 
“hanging”; and, c) the COTS software writes into some 
other application’s instruction or data area causing other 
components and functions to fail. For certain applications 
and architectures it may be possible to supervise or protect 
memory through MMS or by calculating checksums 
regularly. Another alternative can be to use a certified 
COTS. For some real time operating systems certified 
versions are available, e.g. VxWorks and OSE. However, 
these are usually very expensive and it is important to check 
the context the COTS is certified in, [14] [15], (is it on the 
relevant hardware and software platforms, and is it exactly 
the same version?).  

A few studies have been done in order to compare the 
robustness of operating systems and other COTS. One of the 
most known methods for doing such tests is the Ballista 
testing system [5] [6]. The results from these studies show that 
some commercial operating systems have a significant 
robustness failure rate. A study for HSE  in UK performed 
by CSE international, UK [12], concludes under certain 
circumstances and limitations; “On the basis of evidence 
from widespread use, some numeric reliability data, 
observed reliability growth, the existence of test projects 
and the limited analysis carried out by this study, it is 
concluded that “vanilla” Linux would be broadly 
acceptable for use in safety related applications of SIL 1 
and SIL 2 integrity”. They even state that it might be 
feasible to certify Linux to SIL3. 

Another alternative to asses the COTS is to perform 
exhaustive testing, but this might be infeasible for large and 
complex COTS such as an operating system. Sometimes, it 
is possible to ask the vendor to get sufficient documentation 
from the development and testing process to fulfill safety 
standard requirements. Due to the nature of COTS this will 
normally not be possible, and where this has been tried, we 
have often been met with silence.  

In a recent EU research project, Safe-PC [4], supported by 
the IST program under the 5th Framework, the purpose was 
to develop an architecture based on commercially available 
PCs and operating systems, and demonstrate through safety 
assessment its conformance with IEC 61508 SIL1 and SIL2. 
In this project DNV acted in the role as assessor and 
certification body in the project. 

It will clearly be unacceptable to use a single, non-certified 
COTS if the consequences of COTS failure is unacceptable, 
The architecture in Safe-PC is therefore based on a diversity 
approach with diverse architecture (hardware and software) 
[7], the two main components are named PCU and PCX. 
Studies have been made in order to compare the robustness 
and diversity of operating systems [5] [6]. The results from 
these studies show that some commercial operating systems 
have a significant robustness failure rate. In Safe-PC we 
used the following solution: At Java Virtual machine level 
both Microsoft OS and Sun OS supports Java. For Safe-PC 
the simplest hardware configuration that guarantees 
sufficient diversity was the following: a) PCU HW: Sun 
Blade 150, b) PCX: Any x86 PC. And OS selection a) PCU 
OS: Sun Microsystems Solaris 8/9, b) PCX OS: Microsoft 
Windows 2000. Java VM/Compiler selection: a) PCU Java: 
Jamaica VM (compiled with Java Compiler form Jamaica), 
b) PCX Java: Standard Java VM with standard Java 
compiler [7]. 

The final assessment of the Safe-PC was done in the spring 
of 2004 [8], and it concluded that the concept used could be 
assessed to fulfill the SIL2 requirements of IEC 61508 for 
the limited use of the system. 
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An alternative to the requirements in the relevant standard, 
adequate statistical data from field use may be used in the 
assessment. This is the so-called ‘proven-in-use’ argument. 
For COTS this is hardly possible, since in order to certify to 
SIL2 a fault-free operation of 120 years is necessary [12]. 
Even for widely distributed COTS this will be difficult, 
mainly due to difficulties related to lack of sufficient 
configuration status data [14]  [15]. 

A different approach for handling of COTS in safety-critical 
applications is based on ‘wrapping’ of the COTS 
(encapsulating the software component), and is discussed in 
a Galileo certification study for the European Space Agency 
[8], performed by a consortium headed by DNV. In this 
solution the COTS can be protected from erroneous data 
from other components, and the rest of the system may be 
protected from erroneous output from the COTS. 

In 2001, the HSE, UK commissioned research into how pre-
existing software components may be safely used in safety 
related systems in a way that complies with the IEC 61508 
standard. Two reports resulted from this research [10] [11]. The 
first report summarizes the evidence that is likely to be 
available in practice relating to a COTS, while the second 
report considers how the available evidence can best be used 
within the framework of the IEC 61508 to support an 
argument for the SIL achieved by a safety function. In [10] 
five different types of assessment that can be carried out on 
COTS / SOUP; a) process assessment, b) assessment of 
previous use, c) black-box assessments, d) white-box 
assessments, and e) third party assessments. The report 
concludes with proposing that the justification for SOUP / 
COTS should be based on a safety case approach with a 
number of additions to an IEC 61508 approach to a) take 
into account the need for a safety case, b) cope with the 
presence of COTS throughout the safety life-cycle, 
including architecture development, risk analysis, software 
engineering, operation. This is quite similar to the approach 
used in the Safe-PC assessment [7] [8] where also several 
assessment methods were applied throughout the safety life-
cycle. 

VII. SHIP CLASSIFICATION AND CLASS SOCIETIES 

Ships and offshore floating installations are approved or 
certified by classification societies. DNV is one of the 
leading class societies in the world together with Lloyds 
Reigister, ABS, GL, and BV. Such a classification is 
guaranteeing that the ship or offshore installation is safe to 
operate. This approval is based on a set of rules, normally 
proprietary to each classification society. DNV’s rules have 
requirements to strength, stability etc., and also to control 
systems. These rules are based on experience systematically 
gathered over a long period of time. The rules are more 
prescriptive than the requirements laid down in the most 
used safety standards [1] [2] [3]. Instead of SIL they use 
‘essential functions’ (‘....a system which supports equipment 
which needs to be in continuous operation for maintaining 

the vessel’s manoeuvrability.....’), and ‘important systems’ 
(‘....a system supporting equipment which need not 
necessarily be in continuous operation for maintaining the 
vessel’s manoeuvrability, but which is necessary to maintain 
the vessel’s main functions.....’) to distinguish between the 
seriousness of malfunction.  

In a recent report [15] by DNV proposes to work towards 
applying a risk based methodology for assessing systems 
with COTS / SOUP. This requires that detailed functional 
requirements to the overall system are provided. The overall 
functional requirements must be broken down to detailed 
functional requirements to the sub-modules. Based on the 
functional requirements it is possible to compare the actual 
performance specifications of the software and the hardware 
modules and then decide on the applicability of the modules. 
The following functional parameters are at least required 
both on the overall system level and at the COTS module 
level: a) identification of safe state, b) functional reliability 
of safety function to go to safe state, c) response time for 
entering the safe state. 

 

VIII. CONCLUSION 

It is obvious that certification companies and classification 
societies such as DNV will have to develop and impose new 
and clearer guidelines and rules for how to deal with COTS 
in safety critical systems. Some of these rules may be based 
on current best practice, such as found in IEC61508 or 
EN50128. However, rules for how to deal with systems built 
mainly of COTS (many suppliers of safety-critical systems 
have asked to use Window XP as operating system) have to 
be developed based on current and future research. Or, 
alternatively: Could non-reliable COTS be allowed if 
combined with the traditional: Manual override for critical 
functions? In total, the work anticipated to increase the 
dependability of software intensive systems in several 
domains is considered daunting – but it is a risk society must 
manage. 
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Transcript from the discussion

(Due to illness Skramstad has to stay at his hotel-
room for the whole event in Porto, and could not
make the presentation then. Therefore we
arranged a video-conference later where he
made his presentation. Below is some of the
questions asked.)

Ian Peake: I would be interested to see one of
the last few slides---the "wrapping" slide---it
seems reminiscent of the DFSMs work from
DSSE
Ian Peake: yes, I'm not sure how to quickly
explain but just to say that Monash has looked at
ways of characterising proper interactions with
components
Ian Peake: there is a well known reference to
"USS Yorktown" (on RISKS digest) where a
Windows NT machine failure resulted in the
disablement of a US Navy vessel
Ian Peake: is it possible to explain the distinction
between white box/black box and "third-party"
assessments in the "five different types of
assessment that can be carried out on
COTS/SOUP"
a) process assessment
b) assessment of previous use
c) black-box assessment
d) white-box assessment
e) third party assessment
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Abstract

Many embedded systems for vehicles and consumer
electronics critically depend on efficient, reliable con-
trol software, and practical methods for their production.
Component-based software engineering for embedded sys-
tems is currently gaining ground since variability, reusability,
and maintainability are efficiently supported. However, ex-
isting tools and methods do not guarantee efficient resource
usage in these systems.

We present a method that enables resource-efficient
component-based control software by extending hybrid prop-
erty prediction methods (i.e. combining static and dynamic
techniques) to be context-dependent, enabling less pes-
simistic extra-functional component property predictions and,
hence, improved resource utilisation.

1 Introduction

Increasing reliability and efficiency of software inten-
sive dependable embedded control systems is critical [1].
Hence, industry demands practical and accurate engineering
approaches to model, predict, and verify both core software
functionality and extra-functional aspects of the software.

Component-Based Development (CBD) is successfully
practised to achieve enhanced software reuse and maintain-
ability in office/Internet applications. However, in order to
be equally successful in the area of embedded control –
component technologies have to be resource-constrained and
equipped with methods to model and predict extra-functional
aspects of the software (e.g. timing and memory consump-
tion).

The key to achieve efficient resource utilisation, on a sys-
tem level, is to have access to tight and accurate models of
the resource needs of the components in the system. One
key resource is the CPU, where the resource requirement of
a component is Worst-Case Execution Time (WCET). Recent
hybrid methods for WCET prediction [2] have been proposed
which promise a practical approach to gaining tight WCET
estimates for traditional, monolithic, programs. However, ex-
isting methods for WCET estimation are overly pessimistic
in a CBD setting since they are context-oblivious, i.e. not ex-
plicitly taking into account the current usage-context of each
component.

We focus on the problem of efficient resource usage with
preserved analysis accuracy of embedded Product Line Ar-
chitectures (PLAs) [3], like, e.g., control software in vehicles
and consumer electronics. In order to facilitate PLAs – soft-
ware components must be used (and reused) across different
hardware platforms and products.

To maximise reuse in these systems, components need to
be flexible. Hence, reusable components often include behav-
iours that are only used in a few configurations. These behav-
iours cannot easily be removed (e.g., by dead-code elimina-
tion), because they are offered by interfaces and cannot be re-
moved by methods based on analysis of components in isola-
tion. Hence, most existing property prediction approaches are
overly pessimistic, and, thus, design-for-reuse tends to work
against accurate WCET predictions (and, therefore efficient
resource utilisation) in existing models and approaches.

In previous work [4] we showed how a component model,
custom-made for embedded control-systems [5, 6], can be
combined with novel methods for architecture-based, com-
positional reasoning, modelling, and prediction [7, 8, 9].

In this paper, we propose the use of context-dependent
hybrid property prediction methods to make efficient use of
system resources. We extend the existing hybrid prediction
methods by considering the component usage-context. We
use Dependable Finite State Machines (DFSMs) to facili-
tate compositional, architecture-based, reasoning about sys-
tem properties based on context-dependent component prop-
erties and the structure of the component assembly [9].

We illustrate our approach using the SaveComp Compo-
nent Model [5], and an adaptive cruise controller implementa-
tion [6]. In this paper, we limit our context-dependent predic-
tions to component WCET in order to reach efficient proces-
sor utilisation. Nevertheless, our approach is generally ap-
plicable to other extra-functional properties, such as memory
usage, assuming that properties are compositional.

2 Background
The systems considered in this paper are categorised as de-

pendable complex distributed computational-intense embed-
ded real-time systems running in, e.g., vehicles or customer
electronics. In these business segments methods to reuse soft-
ware cross different hardware platforms and product fami-
lies/versions are inquired [1]. Hence, component-based soft-
ware engineering is gaining more and more interest.

1
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2.1 The SaveComp Component Model
The SaveComp Component Model (SaveCCM) [5, 6]

is a component model for control software development.
SaveCCM provides three main architectural elements: com-
ponents, switches, and component assemblies. A component
is not allowed to have any dependencies to other components,
or other external software (e.g. the operating system), ex-
cept the visible dependencies through its input- and output-
ports. A switch provides means for conditional transfer of
data and/or triggering between components. Component as-
semblies allow composite objects to be defined, and make it
possible to form aggregate components from groups of com-
ponents, switches, and assemblies enabling different levels of
abstraction.

The interface of an architectural element is defined by a set
of ports, i.e. points of interaction between the element and its
environment. SaveCCM distinguish between input- and out-
put ports, and there are two complementary aspects of ports:
the data that can be transferred via the port and the triggering
of component executions. The graphical syntax of SaveCCM
(see Figure 1), is similar to UML 2.0 component diagrams,
but with additions to distinguish between the different types
of ports. Principally, the SaveCCM syntax uses B to repre-
sent triggering ports (i.e. the control flow) and � to represent
data ports (see Figure 1).

Example: An Adaptive Cruise Controller
In this section we present an Adaptive Cruise Controller
(ACC) prototype, implemented in SaveCCM [6] (see Fig-
ure 1).
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ACC Application
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Limit

<< SaveComp >>

Figure 1. An Adaptive Cruise Controller de-
scribed in the SaveCCM graphical modelling
language

The ACC extends the regular cruise controller (used in
most cars) in that it helps the driver keep a safe distance to a
preceding vehicle, autonomously changes the speed depend-
ing on the speed limit regulations, and helps the driver to slam
the brake in extreme situations.

The application is based on four components, one switch,
and one component assembly. The assembly (Figure 2 (a)) is

in turn implemented using two assemblies (Figure 2 (b)). Fur-
thermore, the application has two different trigger frequen-
cies, 10 Hz and 50 Hz. Logging and HMI output activities
execute with the lower rate, and control related functionality
at the higher rate.

For a detailed presentation of the ACC application func-
tionality, we refer to [6].
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Figure 2. The ACC control assembly (a), and
the implementation of the feedback controller
(b)

2.2 WCET Prediction Methods
WCET bounds may be obtained via static (model-based),

dynamic (measurement-based) or more recently proposed hy-
brid methods.

Static methods promise safe WCET estimates but critically
depend on time-intensive construction and evaluation of mod-
els of underlying platforms [10]. Moreover, as hardware be-
comes increasingly complex (processors with pipelines and
caches) the variance between typical and worst-case perfor-
mance is growing significantly. As a result, static WCET
analysis tends to produce increasing pessimism in the calcu-
lated WCET bound [11].

Dynamic methods are often cheaper to construct, but with
little guarantee that acquired measurements can be used di-
rectly to derive WCET upper bounds (see Figure 3). Realis-
ing run-time measurements by trying all possible input data
combinations (i.e. the complete value space) is typically not
feasible.

Hybrid methods overcome some deficiencies by combin-
ing static and dynamic methods. Static analysis is used to
limit the input value-space, and run-time measurements are
used to calculate upper bound WCET predictions.

However, existing methods for WCET predictions are not
suitable for component-based development. Existing meth-
ods take a whole-of-system approach and thus produce overly
pessimistic predictions for components. Effectively these
methods are only capable of producing a single portable
WCET estimate for a component, whereas, in fact, the true
WCET of the component may be dependent on the context in
which it is later deployed.

In, e.g., [2], static (model checking) approaches are used to
generate test-cases which are in turn used to generate WCET
observations for functions (strictly program segments), or
even basic blocks within functions. These include the use of
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heuristics and model checkers to generate the necessary test
harnesses which exercise all possible paths leading to instru-
mented points within the code around “primitive” elements,
then incorporating the results into conventional predictions.
However, since such techniques do not make use of mecha-
nisms to qualify the usage context of a given function f , it is
not possible to reuse a predicted WCET for f in a different
context. Indeed it is not clear from the content of several pub-
lished papers whether it is possible to discriminate between
different implicit contexts for f within the original program,
or whether the same WCET for f is used regardless of con-
text.

actual
WCET

actual
BCET

tighter tighter

possible execution times safe WCET estimatessafe BCET estimates

0
Time

measurementsmeasurements

Figure 3. Best-Case Execution Time (BCET)
and Worst-Case Execution Time (WCET) pre-
dictions

2.3 Context-Independent Analysis
Consider the ACC controller assembly Distance Con-

troller from Figure 2 (a), which for the purposes of this il-
lustration we treat as a component (see Figure 4). The Dis-
tance Controller asynchronously interoperates with its envi-
ronment via four ports: three input ports and one output port.

Two input ports are for Relative Speed and Distance to the
car in front, and a pair of input/output ports are for communi-
cating with the Speed Controller. The Distance input port
contains information about the distance to the vehicle in front
together with a enabled/disabled boolean value. The Relative
Speed input port has in the same way an integer represent-
ing the relative speed compared to the vehicle in front and a
boolean enabled/disabled port. The ports related to Speed
Controller communication are not considered in this exam-
ple. Hence, in Figure 4 only the Distance and Relative Speed
inputs are visualised.

When used in a product line of vehicles, some vehicles
will be sold with the full functionality of the ACC, whereas
others will be sold with a simpler, traditional cruise control
function. However, this component is able to provide both
functions, and will hence be deployed in both vehicle types
(i.e. in two different contexts). By disabling both the Relative
Speed and Distance ports, the Adaptive Cruise Controller
(ACC) becomes a more traditional Cruise Controller (CC),
by not taking into account the distance to the vehicle in front.
Figure 4 visualises these two component modes by separating
the internal control flow of the component.

For many components, a WCET bound, even if tight, oc-
curs rarely, and only in certain situations. In many contexts
the execution time may be much less. For example, assume
that the WCET for the Distance Controller is 4ms. This
might only occur rarely, in ACC mode. In the less demanding

<<Distance Controller>>

Distance

Relative
Speed

ACC Mode
WCET = 4

CC Mode
WCET = 0.5

Figure 4. Context-dependent control-flow for
the Distance Controller

CC-mode, the execution might never be more than say 0.5ms.
Ideally, then, the WCET of a given component should always
be qualified by stating the context in which it is valid (see
Figure 4).

3 Dependent Finite State Machines

To model context, we make use of the formal notion of
a protocol type from Dependent Finite State Machines (DF-
SMs).

DFSMs are parameterised dynamic formal models for
components. They extend communicating finite state ma-
chines and model components’ abstract implementation (ab-
straction) and deployment context as rigours parameters of a
components interface specification. The abstraction parame-
ters cater for dynamic specialisations and variations in prod-
uct lines, the requires parameters capture properties and vari-
ation in different deployment contexts. Network of DFSMs
represent parameterised product line architectures. Actuali-
sation of parameters are compositional as well as the incre-
mented assembly of components into such networks. DF-
SMs are particularly suitable for architecture-based reasoning
about extra-functional properties.

An abstract example of what can be modelled with DF-
SMs is the context dependent behaviour of CompC in Fig-
ure 5. The behaviour of CompC is limited to the requsted ser-
vices from CompA and CompB, i.e. the values on CompC
input ports are limited to the valid output from CompA and
CompB. Hence, the execution behaviour of CompC can be
described as a function of the critical services required by
CompA and CompB.

DFSMs have their basis in trace languages, which can be
regarded as an extension of regular languages.

Regular languages promises a useful trade-off between
precision and computational feasibility suitable for solving
the problem identified above. DFSMs describe the allowed
interactions between a given component and its environment
(i.e. protocol types) as well as how the component itself is
implemented. DFSMs also provide ways of talking about
the structure of, and relationships between, those protocols
by modelling a network of interface-protocol dependencies
(see Figure 5).
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<<CompB >>

Current Usage-Context
WCET = 2

WCET = 5

<<CompA >>

Current Usage-Context
WCET = 10

WCET = 3

WCET = 6

<<CompC >>

WCET = 5

Current Usage-Context
WCET = 2

<<CompC >>

WCET = 5

Current Usage-Context
WCET = 2

Figure 5. An abstract example of a context-
dependent control-flow

3.1 Protocol Types

A protocol type is a formalisation of the protocol accept-
able to a component, defined as a regular language.

For a concrete example of DFSMs, consider the proto-
col type of Distance Controller (see Section 2.3), taking
into account parameters (and their respective abbreviations)
Distance.Value (Dist), Distance.Enabled (DistE), Rela-
tiveSpeed.Value (Speed), and Speed.Enabled (SpeedE).

When Distance Controller is triggered, it reads values
from single element buffers corresponding to its input ports.
The allowed values of the relevant ports are determined by
their types.

As is standard in behavioural contract specifications, valid
calls to Distance Controller can be represented by a regular
language. Consider representing a call to a component by
a string of symbols consisting of the component’s name and
its actual parameters – simple binary encodings of the values
present in port buffers as actual parameters.

For example, triggering the Distance with port assign-
ments (Dist=01100100, DistE=1, Speed=00001010,
SpeedE=1), would be represented by the string
invocdistance 01100100 1 00001010 1.

A regular language L giving the set of all valid calls based
on the above scheme can be defined using regular expressions
as follows:

L ::= invocdistanceDist DistE Speed SpeedE

where (assuming a simple unsigned 8-bit representation
for integer values):

Dist = integer (8-bit)
DistE = bit

Speed = integer (8-bit)
SpeedE = bit

integer = bitstring

bitstring = bit8

bit = 0|1

Most importantly for our purposes, a protocol type can be
used not only to describe the protocol acceptable to a compo-
nent, but also the way a component is used in a given context.

Consider a component C whose protocol type is defined
as the language L. Then it is possible to consider, for a given
deployment context of the component, another protocol L′

which describes the way C is used in that context. The sub-

protocol L′ must conform to L, that is, L′ must be a sublan-
guage of L (contain only strings of L).

For example, if Distance were deployed into an environ-
ment where Distance and Relative Speed inputs were per-
manently disabled (i.e. CC-mode), the context could be de-
scribed by the language LCC (a sublanguage of L):

LCC ::= invocdistance integer 0 integer 0
For the remainder of this paper, when we use the “context”,

it should be understood to include the notion of protocol sub-
type.

Finally, the notion of subprotocols leads to the following
critical observation. For an upper-bound property such as
WCET, the WCET cannot go up when context is restricted.
Formally, consider a component C whose protocol type is L

and two usages of C where one is strictly narrower than the
other: formally L and L′ where L′ ⊆ L, with corresponding
WCETs WL and W ′

L
. Then the inequality W ′

L
≤ WL must be

satisfied. This property forms the basis of context-dependent
property predictions.

4 Context-Dependent Property Prediction
Accurate architectural-based reasoning about system per-

formance is enabled by exploiting context-dependent compo-
nent property models. Such models make it possible to for-
mally and accurately capture the variation in properties that
may occur depending on the way the components are used.

The above properties of protocol types can be exploited
to derive context-dependent property predictions. Our ap-
proach conceptually separates engineer-defined static design-
time configurations of the components (e.g. components dif-
ferently configured to suit different product lines) from the
deployment-context (i.e. component relations in the current
assembly).

The usage condition, or context, of a specific component
usage, instantiation or deployment, is formalised in terms of
a protocol type.

Context-dependent property models are collections of
guarded component properties: a value representing a prop-
erty of some component is always qualified by pairing it with
the context (i.e. a protocol type) in which it is valid.

4.1 Static Design-Time Contexts
So, for example, the fact that the WCET for Distance

Controller is 4ms is expressed by the pair (4ms, L), where
L is as given above.

For accuracy, additional pairs may be added, refining the
property model in other useful contexts. For maximum accu-
racy, search the pairs for the narrowest matching context with
the lowest WCET. For maximum efficiency, it is possible to
impose a lattice ordering over pairs based on the subprotocol
relationship between guards so that not all pairs need to be
considered for a given context.

For example, to express that, when neither the distance nor
relative speed inputs are enabled, the WCET for the Distance
Controller is much lower, e.g., 0.5ms, we simply add the pair
(0.5ms, LCC), where LCC is as given above.

Practically speaking, implementing a subprotocol test
amounts to a test for regular language inclusion, which can
be implemented relatively cheaply using finite automata.
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Each component in an assembly can in the same way be
equipped with context-dependent information about WCET
(see Figure 5) that can be reused for accurate design-time
property predictions. For any component with a suitable set
of guarded property pairs, in a given deployment context, a
property value can be predicted at design time. A deployment
context includes information about how a given component
is used, particularly the deployment environment model (i.e.
static design-time configurations of the components).

In this way system-level properties of the application can
be derived from the context-dependent component proper-
ties. In the same way, component assemblies (i.e. hierarchi-
cal groupings of components) can be accurately predicted by
propagating the usage conditions down through the assem-
blies.

Analyses are performed component-wise, deriving for
each component a set of guarded WCETs, as needed to pro-
vide the desired level of accuracy. Where components contain
no branches, a single, general, usage context may suffice. In
other cases, more detailed characterisations of usage context
may be required, but only up to the required level of accuracy.

4.2 Deployment Contexts
To further tighten the property predictions, one is not lim-

ited to engineer-defined static design-time configurations of
the components. Additionally, to facilitate more fine-grained
architectural-based reasoning, properties may be further con-
strained by considering the effect of connected components
on the deployment context (see Figure 5).

Usage conditions can be fed into the network as constraints
that propagate through the network and eliminate execution
alternatives. The process can be likened to dead-code elimi-
nation, except that it is performed at the level of the property
model – component code itself is not affected (see Figure 4).

For adequate accuracy and performance, this approach re-
lies on two assumptions: (i), that correct (but not perfectly
tight) upper bounds are acceptable; and, (ii), that component
types with widely varying WCETs (see Figure 6) can be con-
sidered to be the union of a small set of sub-behaviours in-
duced by non-overlapping contexts (see Figure 4), where each
sub-behaviour can be accurately characterised by a single cor-
rect (and accurate) property bound.

Freq

Time

WCET
CC Mode

0.5 ms

WCET
ACC Mode

4 ms

Figure 6. A conceptual context-dependent
WCET graph for the Distance Controller

4.3 Context-Dependency in SaveCCM
To fully achieve the above in SaveCCM, the component

protocol semantics, presented in [4] must to be extended in

order to sufficiently detailed characterise the conditions lead-
ing to the WCET variation. While in general such problems
are equivalent to the halting problem, existing WCET tech-
niques already take into account context by identifying e.g.,
simplified domain models for variables including sub-ranges.

Modelling SaveCCM sufficiently to propagate interesting
contexts from higher architectural levels is additionally com-
plex because it includes component scheduling and asynchro-
nous [12], buffered data flow between tasks of different fre-
quency. Nevertheless, it should be feasible to derive such a
semantics, since there are well understood extensions to au-
tomata to model relevant primitives, such as concurrency and
variables.

5 Context-Dependent Hybrid Prediction

As stated in section 2, existing hybrid analysis techniques
are based on a whole-of-system approach which is unsuitable
for component-based analysis, making it difficult to reuse
parts of an WCET analysis for individual components with
sufficient accuracy.

In this section we present a hybrid property prediction
method that uses DFSMs to generate context-dependent in-
strumentation data. We then employ the framework-based
software component monitoring apporach described in [13]
to measure the execution behaviour using the obtained instru-
mentation data.

This approach is especially beneficial in embedded prod-
uct line architectures, since it facilitates early predictions of
system-level properties (that can be used to guide the devel-
oper choosing inexpensive hardware) and, also, a pragmatic
way to obtain extra-functional performance properties.

The resulting monitoring information, as well as the in-
strumentation data, is stored together with the component in
the repository. Since, in a product line architecture the same
application might execute on different target hardware. In this
case, the engineers will simply reuse the instrumentation data
and just measure the component performance on the new tar-
get hardware.

5.1 Development Process

Using the context-dependent hybrid property prediction
approach together with hybrid schedulability analysis [14,
15], an attractive development process can be obtained (see
Figure 7). The architectural model of the component assem-
bly is used for architectural-based analysis, but also for test
and instrumentation:

Test and Instrumentation: Design-time context-
dependent analysis (as described in Section 4) is used in
order to achieve early assessments about extra-functional
component properties [9]. This approach yields formal
context models which may be used to derive run-time mea-
surements of the component properties as for existing hybrid
approaches. Critically, however, both observed and predicted
properties are reusable with confidence since they are
combined with context models which state in which contexts
the properties are valid. Hence, we can obtain sufficiently
accurate estimations of the components extra-functional
properties.
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System Deployment: These properties are then used to
perform tight schedulability analysis using hybrid techniques
[4, 15]. Also, the system generator can be augmented to au-
tomatically insert instrumentation code to perform run-time
monitoring [13] of the deployed system. And, during run-
time, the unused processing time can be reclaimed using vari-
able component performance modes as described in [14].

Component AssemblyComponent Assembly

Component
Repository
Component
Repository

Architectural ModelArchitectural Model

Instrumentation CodeInstrumentation Code

System GenerationSystem Generation

Static WCET AnalysisStatic WCET Analysis

Instrumentation CodeInstrumentation Code

Schedulability AnalysisSchedulability Analysis

System GenerationSystem Generation

Test and Instrumentation System Deployment

MeasurementsMeasurements System ExecutionSystem Execution

Figure 7. Component-based development us-
ing context-dependent predictions

6 Conclusions and Future Work
We present a compositional method to increase resource-

efficiency in component-based control systems for product
line architectures by extending hybrid property prediction
methods to be context-dependent.

We introduce component usage-profiles, where extra-
functional properties depend on the current usage-context, in
order to obtain tighter property predictions and, hence, more
efficient resource-utilisation.

As for future work, we plan to extend our theories to work
with other performance properties, such as, e.g., memory or
reliability [7]. We also plan to extend hybrid resource recla-
mation methods (such as [14, 15]) using probability distrib-
utions of the components execution time in order to predict
the quality-of-service level that can be performed in the back-
ground alongside the hard real-time schedule.
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Transcript from the discussion

Q(ES): What if you don’t know what the structure of the aggregate is, if the aggregation patterns are
restricted this gives us some chance to say something about behaviour.
A: Yes, this is interesting..

Q(Shi): you mention the reuse of components, what about reuse of test case
A: You probably have to be very careful. There could be minor differences 
Q: modelling of concurrency is a problem.Your new approach to deal with this?
A: In order to be able to cope with component-based systems you need to know that your system is
extendable, and can be used to model concurrency. Effectively, if you add an independence relation to a
set of symbols the independence relation will tell you something more about the structure, you get a
partial ordering of symbols. You can end up with a state machine, Petri net model, with further analysis
possible. You’re not ruling out modelling these kind of things.
Important to model the semantics of communication between tasks, and times you have to wait, what
guarantess do we have that a message gets there.

Amund’s provoking opinion: “guaranteeing anything is useless.. it's all a matter of probabilities. Bad things
happen” .. This caused some laughter and agitation in the audience.
Q(AS): How about the external context, interrupts and other tasks/events interfering. The probability of
being in cache would be affected etc..
Ian: This is another line of investigation, which needs to be looked at.

Ian: Isn't it a bit scary that we're moving towards CPU architectures not being fully documented in terms of
processing capabilities, this makes it hard to model and predict behaviour.
Maybe most of all a problem when dealing with consumer products, Windows OS etc.
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1

PORTO 2005

Workshop on Software intensive dependable
embedded systems

Organized by
Amund Skavhaug and Erwin Schoitsh

2

What the workshop was all about

• For our Ercim WG: to increase visibility
• For participants: 

– Meet new people
– Visit a ”new” conference at the same time
– Have their ideas discussed
– Discuss the ideas of others

• To link with EUROMICRO

3

Something was different from 
others...
Draft proceedings was made available before the event.
A brief agenda with titles was given out to all 

participants at the event.
Final proceedings will include edited transcript of

discussion from the presentations.

4

Brief facts

• 10 papers reviewed and accepted
• 2 long half-days were used for discussions and

presentations of these
• A web-site for the workshop was made
• The papers were also presented as posters, quite

visibly and well-placed for all to see during the whole
event.

• A number of positive remarks were given for the
format of the event, by participants and organizers.

5

Some more things done

• The final publication was to be edited to include the main-points
from the discussions. (This have been very difficult.)

• Questions asked, and the answers given, were given to the
participants for review before inclusion. (They have been put on
a WIKI-type web site we created)

• The final publication will exist both as bound paper and as pdf
on the web. 

• A video-meeting was arranged with participation of 7. 5 in 
Trondheim, one in Australia and one in England.

6

Suggestions for next event

• We were welcomed back !
• Dubrovnik in Croatia will attract people
• We will have some of the similar things done for 

practical reasons, i.e. payment to Euromicro
conference(s) for the participants.

• We need a more clearly stated goal of what shall be 
achieved in the workshop !

• Call for papers will begin in Desember 2005 ?
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ARC (Austrian Research Centers) Seibersdorf Research
Information Technologies

ERCIM Working Group on Dependable Embedded Software-
Intensive Systems

EU Framework Program 6: PRIORITY [2], Proj.nr. 511764 
[Information Society Technologies, Embedded Systems Unit, FP6/Call 2]

Integrated Project: DECOS
Dependable Embedded Components and Systems

Erwin Schoitsch
Euromicro, Porto, Portugal

August 31th, 2005

Euromicro, Porto,
31 August 2005

Seibersdorf research – Divisions

• Information Technologies
• Health Physics
• Biogenetics, Natural Resources
• Life Sciences
• Materials & Production Engineering
• Integrated Microsystems Austria
• Biomedical Engineering
• Intelligent Infrastuctures and Space

Applications
• Media Research Studios Salzburg

IT

HP
B&L

MP

IMA BE
IS

MR

Staff 2005: 
Ca. 450

Largest enterprise of ARC – Austrian Research Centers: Austria‘s largest
independent, application-oriented research organisation (10 sites, 750 staff)
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ARC  Products (examples)

Intellectual Capital Report

High perfor-
mance image
processing

Electronic 
railway signalling
system

Mobile
Communications Safety

Climatic
wind tunnel

Light metal
components

Indium FEEP 
Microthruster

Land use map
based on satellite
data

BibTechMon

Wissensmanagement/-balance
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Computer Vision Ambient IntelligenceTelecommunications
& EMC Technology

Smart Systems for

� SW/HW Development of
dependable real-time
systems 

� System safety analyses 
(RAMSS) and software 
testing (V&V)) 

� Software Engineering

� Optical high-performance
inspection, e.g. bank notes

� Video surveillance for 
public safety and road
traffic

� Development of vision-
based automotive systems
for safety and comfort

� EMC-compliant design
� Mobile communications

safety
� Mobile radio channel

simulators 
� Quantum cryptography
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IT - Dependable Embedded Systems Group
� Co-ordinator of EU Integrated Projects DECOS, SECOQC
� TT-VisionNode (SensorNode)

� Integration of Image Processing and Dependable 
Controls, Smart Cameras and Sensors

� Accredited V&V Lab (EN ISO/IEC 17025) 
� Research Topics

� Methodology & tools for dependable embedded
components and systems

� Model based V & V of components & systems
� Host-target testing with Hardware-in-the-loop (HIL) / 

Software-in-the-loop (SIL)
� RAMSS/Hazard analyses for component based systems
� European Projects and Networks on Dependability and

Software Process Management (ENCRESS, AMSD, ISA-
EuNet, SPIRE, OLOS, ACRuDA, ESPITI, … )
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DECOS Basics

Project Facts
Start: July 1st, 2004, Duration: 3 Years, Budget: 14.3 Mio €, EU Funding: 9 Mio €

Objective:
Development of fundamental 
(domain and technology independent)
enabling technologies to faciliate
paradigm shift from
federated to integrated design
of dependable real-time embedded
systems

Application

Core Services
C1 Deterministic and Timely

Message Transport
C2 Fault-Tolerant

Clock Synchronization
C3 Strong Fault Isolation
C4 Consistent Diagnosis of

Failing Nodes

Hiding of implementation details
from the application, thereby

extending the range of
implementation choices

High-Level Services
DAS-Specific
(Platform Interface Layers)

Distributed Application
Subsystems

Core Services
DAS-Independent

PIL S

(e.g. TTP/C, Time-Triggered Ethernet)
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¾ From mechanics to 
electronics and
software – 80 ECUs, 
one per function and
per supplier?

¾ Increase of electronics
from 25% to >40%

¾ Innovations 80 – 90%
based on electronics 
and software

¾ 55% of car failures
caused by electronics, 
cabling/connectors  
and software (GI 
conference Oct. 2003 –
DC postponed “X-by-
wire”) – Liability !!!

Why Inte grated A rchitectures – Au tomoti ve Example :

Slide 8Euromicro, Porto,
31 August 2005

DECOS Motivation

� Electronic Hardware Cost Reduction
(fewer ECU’s, cables, connectors)

� Enhanced Dependability by Design  
(clear partitioning of safety-critical       
and non safety-critical subsystems 
by design)

� Reduced Development Costs
(modular certification, reuse of software 
components, structured integration for
communication & computational elements)

� Diagnosis and Maintenance 
(diagnosis of transient and intermittent component failures)

� Intellectual Property (IP) Protection

Facilitate the systematic design & deployment of “ integrated ”
electronic subsystems in embedded systems through:
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Applications are composed of subsystems of different criticality

e.g. crash-prevention system, engine control system, door lock system
Federation: advantage=encapsulation, IPR protection

disadvantage=cost, space, power consumption,
complexity in cabling, connectors, buses

Integration: advantage=cost, space, power consumption, SW-only 
implementation (IPR), dependability benefit fewer connectors etc,

disadvantage: more design complexity, highest SIL level for all
components?

Requirements for Integrated Architectures: No interference between 
“jobs”(SW-components)  in
- time (predictable allocation of time slots to jobs in DAS’s of nodes)
- space (encapsulated execution environment, etc.)
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DECOS provides
- predictable allocation of time slots to jobs in DAS’s of nodes (TT core)
- space (configurability, composability of mixed-criticality applications)
� encapsulated execution environment, 
� virtual communication links and gateways (jobs to behave as if physically

separated), 
� fault tolerance layer (functional, value and time domain), 
� partitioned OS in HW, software controlled (diagnosis, fault tolerance) 
� diagnostic service (identifying faulty components, intermittent and 

transient faults and Heisenbugs by job statistics) (supports SW-IPR 
protection by transparent “black box” integration)

Allocation: conforms to IEC 61508 (allocation of safety functions to system 
components, component-based modular safety case): many feasible
assignments may be possible – validation (see G. Weissenbacher)
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Hazard and ris k

analysis3
Overall saf ety
requ irements4

Safety  requ irem ents
A llocation5

Overa ll
operation  a nd
maintena nce

planning
6

Overa ll 
operation  a nd
maintena nce

planning
7

Overa ll 
insta lla tion  and
commiss ion ing

planning
8

Overall plann ing
Safety-related

systems:
E/E/P E S

9
Realisat io n

(see E&E&P E S
safety

lifecycle)

Safety-related
systems:
E/E/P E S

10

Realisat io n

External risk
reduction
facilities

11

Realisat io n

Overall inst allati on
and com mission ing12

Overall saf ety
validation13

Overall oper ation,
Main tenance and repair14

Decom missioning
or dispo sal16

Overall m odifi cation
and retr ofit15

Back  to appr opriat e
Overall saf ety lifecy cl e

phase

IEC 61 508
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DECOS will provide
- A hardware-software base (a software-supported hardware solution for 

hardware-enabled partitioning and software error checking)
- Software services (“High level Services” to build appl. on top of core services)
- Prototype tools for design, development and validation/verification and 

simplification of certification of applications based on integrated DECOS 
architecture, especially for deployment (assignment of jobs of DAS’s to nodes 
(=hardware unit). Nodes are the basic Fault Containment Region (FCR) and 
basic safety critical HW target platform based on (any) basic core services
(TTP/C, TT-Ethernet, Layered FlexRay,..) providing:
- predictable transport messages
- fault-tolerant clock synchronization of global time
- Fault/error isolation and tolerance
- communication fault diagnosis and deterministic recovery
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DECOS Partners (19)
� Industrial Partners:

Audi Electronics Venture, 
Airbus, EADS, Infineon, TTTech,
Fiat, Profactor, Hella, Liebherr, 
Thales, Esterel

� Research Centers:
ARC Seibersdorf (Co-ordinator), 
SP Swedish Test. & Res. Inst.

� Universities: 
TU Vienna, TU Darmstadt, TU 
Hamburg-Harburg, Uni Kassel,
Uni Kiel, Uni Budapest
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DECOS Subprojects

� SP 1: Architecture Design (TU Darmstadt + TU Vienna)
� SP 2: Component Design and Implementation (TTTech)
� SP 3: Silicon Infrastructure (Infineon)
� SP 4: Validation and Certification (ARCS)
� SP 5: Application Automotive (Audi)
� SP 6: Application Aerospace (Airbus)
� SP 7: Application Control (Profactor)
� SP 8: Training, Dissemination and Standardization (ARCS),

Policy and Gender Issues
� SP 9: IP Management and Assessment (ARCS)
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Subproject 1 – Architecture Design (Design Methods)
To reduce mental complexity: (nearly) independent subsystems with 

precisely defined LIFs (Linkage Interfaces), internals hidden 
DECOS: Technology invariant software interfaces, application 

design and development
� Distributed Application

Subsystem (DAS) modelling
� Platform Independent Model (PIM)
� Platform Specific Model (PSM)
� Hardware-Software Integration
� Platform Interface Layer (PIL)
� Middleware Services
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DECOS System Architektur

Communicati on C ontrol ler

Basic  C onnector Un it

C omplex C onnector UnitSafet y-critical
Connect or Unit

A pplication
Computer

(Pr ocessor -
Core )

A pplication
Computer

(Pr ocessor -
Core )

Application
Computer

(DSP)

Application
Computer

(FPGA)

SC C U

CC
BC U

Legac y
C A N-Node

(FPGA )

CCU

CC

BCU

Basic  C onn. Un it

C omp. C onn. Un it

CC
BC U

C C USC C U

CC
BC U

CAN/LIN/…-
Gateway

TTP
(Layered FlexRay, 

TT-Ethernet)

CAN
LIN
…

CAN
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Subproject 2 – Component Design and Implementation

Encapsulation / Diagnosis  / FT-Layer
� WP 2.1 Encapsulated Execution 

Environment (partition OS)
� WP 2.2 Virtual Communication Links 

incl. Gateways
� WP 2.3 Diagnostic Services
� WP 2.4 Optimized FT-Layer
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Subproject 3 – Silicon Infrastructure (Middleware)

Fault-Tolerance Layer (HFTL) / Event Layer (HEVL)

TriCore

SDRAM

Flash

Interface

Peripherals

Interface TriC ore-Board

Human-Machine Interface

Environment

Interface

Physical layer

FPGA-Board

TT-Bus

HFTL HEVL

FPGA
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Subprojects 4 - Validation and Certification

PIL for conn. units
DAS jobs + PIL APIs

PIM DAS 1 Resource-
layer spec.

incl.
PIL descr.

HW/SW-Integration
(mapping PIM->PSM)

PSM

PIM DAS k…

…

PIL modules
PIL APIs

PIL for conn. units
DAS jobs + PIL APIs

Node1 (component)

„PIL pool“(verified)

DAS 1 modules DAS k modules

Deployment

… PIL for conn. units
DAS jobs + PIL APIs

PIL for conn. units
DAS jobs + PIL APIs

Noden

WP4.2 
(Verification of 
architecture and 
components)

selection /con figura tion (verified ?)

Test Bench View:
A Framework for
V&V&C embedded in
DECOS Technolog y

DECOS Technology will
considerably simplify
System validation and
Certification !

Test Bench: Means
to verify actual
application
deployment in a 
workflow-
like manner
(DASs, 
components)
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DECOS Application Areas

� Automotive
� Aerospace
� Railways
� Industrial Control
� Medical Systems
� Autonomous

Systems

� DECOS will develop structured guidelines for domain-
independant and technology independent integration.
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DECOS Application: Aerospace
Flap Control Demonstration System for Airbus Outer Flap System
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DECOS Application: Automotive
Driver Assistance and Crash Warning and Avoidance Demonstration Systems

Environment Simulator
Sensor
fusion

Surround-
ing objects
database

Vehicle
motion +
collision
avoidance
control

Vehicle
dynamics
controller

Vehicle
drivetrain
controller

HIL level 2

HIL level
1

Environment
Simulator

Vehicle Simulator

Driver 
warning

logic

Lateral
control

Acceleration
deceleration

Critical
Situation

Generator

Performance
analysis
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DECOS Application: Industrial Control
Vibration Control Demonstration System for Nano Imprinting Machines

Objectives:
Suppression of critical vibrations

in high-end nano-imprinting machines
for next-generation Sensors,

Microoptics, Bio- and Nanotechnology
Long Term Vision: Structural Control.
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DECOS Economic Impact
(Estimations for the Automotive Sector)

� 20 % Cost Reduction
expected for System
Development

0

20

40

60

80

100

Requirements
Analysis

System Design Programming
and Unit Testing

System Testing
and Integration

Total

Without DECOS

With DECOS

� 13 % Total Cost
Savings for
Hardware,
Maintenance and
System Development 0

5

10

15

20

Hardware Maintenance System Development Total

Cost Savings [%]
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Economic Impact of Dependable Embedded Systems
and DECOS Technology (examples)

� Electronics in Cars: 170 billion € HW, 100 b € SW (2010), Europe in leading 
position

� Driver assistance systems: 2-3 b € 2007, increasing by 50% within a few years
� Aerospace industry revenues: 265 b € total, 70 b € civil, Europe in leading 

position
� European mechanical Engineering Industry: 353 b € turnover, 32% of 

innovations DES-based (HW, SW) rising to 40%
� SMEs in active safety systems electronics consultation and know-how transfer 

services in the validation and certification market: 5 b € (2010), annual growth 
about 30%

� Tool and component manufacturer: annual increase expected in DES market 
by 20% - 40 %, depending on sector.

� Environmental, Quality and Safety of Life and Employment impact expected to 
be considerable large by means of DES –mass deployment

Slide 26Euromicro, Porto,
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Roadmaps available at  https://rami.jrc.it/roadmaps/amsd
DECOS project: http://www.decos.at
ARC-sr, IT: www.smart-systems.at
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Improving the Performance of Embedded Superscalar Microprocessors by Adding Partial Pipelines

Main Topics
•Motivations and the Partial Pipeline 

•TriCoreTM 2.0 Microarchitecture and Models 

•TriCore 2.0 Instruction Set Simulation and Profiling

•Block Code Simulation and the Performance Comparison

•Future Work
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Motivation
•Save the chip space and improve the performance  

•Reduce the hardware implementation complexity of a
pipeline. 

•A partial pipeline can execute a subset of instructions 
executable by a standard pipeline of its type. 

•A partial pipeline is simpler than a standard pipeline

•Reduce the design space
ERCIM workshop 2005 Porto, Portugal 31st Aug/1st Sep 2005
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Research Stages at High Level

Instruction set
simulation

(via TriCore
2.0 simulator)

Instruction
execution

trace
profiling

EEMBC
benchmarks

Sampled blocks
of code and their

execution
frequencies

IP instruction
subsets designed
for the partial IP

pipeline

TriCore 2.0
microcontroller/DSP core

microarchitecture

Base
microprocessor

modeling

3-pipeline base
microarchitecture

Duplicating
the IP

pipeline

standarad
4-pipeline

microarchitecture

Adding the
partial IP
pipeline

A set of special
4-pipeline

microarchitectures

Reconfigurable
block code
simulation

Performance
improvement of the
partial IP pipeline

Performance
computation

and
comparison

Stage 1

Stage 2

Stage 3
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TriCore 2.0 Microarchitecture

Integer Processing (IP) Pipeline

•Some instructions have both 16- and 32-bit versions, e.g. add 
and add16

•Varied instruction execution latencies

•Three pipelines and one instruction for one pipeline only : 

Optional Floating Point Unit (FPU) Coprocessor

Load/Store (LS) Pipeline

Loop (LP) Pipeline
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Standard 3-Pipeline Base 
Microarchitecture Model

Integer Processing (IP) Pipeline

Load/Store Pipeline (LS)

•One cycle latency for all instructions

•Three pipelines: 

Loop Pipeline (LP)
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Standard 4-Pipeline Microarchitecture
Model by Duplicating the IP Pipeline

Integer Processing (IP) Pipeline

Load/Store Pipeline (LS)

•Four pipelines: 

Loop Pipeline (LP)

Integer Processing (IP) PipelineDuplicated IP pipeline
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Special 4-Pipeline Microarchitecture
Models by Adding the Partial IP Pipeline

Integer Processing (IP) Pipeline

Load/Store Pipeline (LS)

•Special four pipelines: 

Loop Pipeline (LP)

Partial IP Pipeline
•Adding Partial IP
pipelines for a subset
of IP instructions.

•Two groups of partial 
IP pipelines, one with 
and one without mul
& div operations. 
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EEMBC Benchmark Suite
•EEMBC: embedded microprocessor benchmark consortium

•EEMBC automotive/industrial embedded microprocessor 
benchmark suite

•It consists of 16 benchmarks, regarded as a whole program

•Source benchmark programs in C programming language

•Benchmarks are compiled into the TriCore 2.0 assembly code 
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TriCore 2.0 Instruction Set Simulation

EEMBC 
benchmarks in 
assembly code

TriCore 2.0
Instruction
Set Simulator

Instruction 
execution trace
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Instruction Execution Trace Profiling

•Analyse the instruction execution trace of each benchmark

•For each execution trace file, main simulation part is 
considered

•The simulation initialisation and house keeping parts are 
ignored.

•Look at results of all 16 benchmarks all together.
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…… (1)

Computing the Weighted Execution 
Probability of Each Instruction

¦ ¦
¦
  

  m

i j ij

j ji
i

T

T
OverallP

1

16

1

16

1

Where:  OverallPi: the overall execution probability of the i-th instruction

Tij : the total number of execution times of the i-th instruction in the

j-th benchmark, i.e. total appearance times in the execution trace  

of the j-th benchmark.

m:   total instructions in the TriCore 2.0 instruction set.   
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Rules of Selecting IP Instructions for 
Partial IP Pipelines

•Select IP instructions with high execution probabilities  

•Create two categories of IP instructions, one with and the
other without MUL/DIV instructions, each with 4 groups.

•Find the group with the optimum performance improvement.

•Excluding jump instructions  
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Groups of IP Instructions with High 
Execution Probabilities

HD0.02%less than unsignedlt.u
HD0.02%move unsignedmov.u

… …
FB0.39%shiftsh (16) 
FB0.43%extract datadextr

0.51%cond. Jumpjne (16)
0.84%jump if zerojz (16)

FB0.95%movemov (16) 
E0.99%multiply submsub
E1.34%multiply addmadd
EA2.05%subtractionsub (16)
E2.12%multiplicationmul (16)

2.37%cond. Jumpjlt
EA6.50%arithmetic shiftsha (16)
EA7.70%additionadd (16)

Group (With mul/div
operations)

Group (Without 
mul/div operations)

Freq.  
(probability)OperationOpcode
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Microarchitectures in Our Study

1124-pipeline
1113-pipeline (base)

E,F,G,H11114-pipeline (H)
E,F,G11114-pipeline (G)
E,F11114-pipeline (F)
E11114-pipeline (E)

A,B,C,D11114-pipeline (D)
A,B,C11114-pipeline (C)
A,B11114-pipeline (B)
A11114-pipeline (A)

LP(LOOP)LS(Load/Store)IP
Partial IP 
Pipeline

Full pipelines
Group of 

instructions 
for partial 

IP

Number of pipelines

Architecture names
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Sampled Block of Code and Their 
Execution Frequencies

• Instruction execution trace analysis generates
the execution frequency of each instruction 
and each block 

• Select blocks of instructions executed at least 
once in the execution trace for the new 
simulation, i.e. the block code simulation

• Simulate and graphically represent the execution of each basic 
block, and can report total number of instructions, Ib and cycles, 
Cb executed of the block.  

• Performance contribution results of each block in a benchmark: 
total instructions executed, Ib*Fb and cycles executed, Cb*Fb.

• Results of each benchmark: summation of results of each basic 
block, total instructions and cycles,   and 
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Reconfigurable Block Code Simulation

bbFI¦

bb FIIj ¦ *

bb FCCj ¦ *
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Computing the Performance of Each 
Microarchitecture

)(
)(

baseWAMofIPC
enhancedWAMofIPCSpeedup  

¦
¦

 

  16

1

16

1

j j

j j

C

I
WAMofIPC

Where: Ij = total instructions of j-th benchmark,
Cj = total cycles of j-th benchmark.

…… (2)

…… (3)
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Graphical Representation of the 
Instruction Issuing Results of A Block

Cycle 
1

2

(b) Modeling result of4-pipeline

Cycle 
1

2

(d) Modeling result of4-pipeline (B)

Cycle 
1

2

3

(c) Modeling result of 4-pipeline (A)

Cycle
1

2

3

(a) Modeling result of 3-pipeline
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The Overall Performance Results of
All Microarchitectures

P e r f o r m a n c e  o f m i c r o a r c h i t e c t u r e s
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Factors Affecting the Performance 
Results

• One set of EEMBC benchmark assembly code is
used for all simulations 

• It was compiled with the optimisation towards the 
base 3-pipeline microarchitecture

• Results of the base 3-pipeline microarchitecture
are relatively optimum. Results of others are not.
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Future Work
•Simulate microarchitectures with real instruction latencies. 

•Use a different compiler without optimisations towards the
base 3-pipeline microarchitecture.

•Use different the benchmark suite.

•Study why three instructions, add, sha and sub, get high
execution probabilites.
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Summary
•Introduced motivations and the concept of a partial pipeline 

•Presented TriCore 2.0 microarchitecture and models 

•Covered TriCore 2.0 instruction set simulation and profiling

•Discussed block code simulation and the performance 
comparison 

•Briefed future work
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Thank You!
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The PISA Architecture: A Viable 
Platform for the Superscalar Execution 

of Statically Scheduled Stack Code
Soyeb Alli, Chris Bailey

University of York
York, UK

Soyeb.alli@cs.york.ac.uk

The PISA Architecture

• Partially Implicit Stack Architecture

Static Scheduling in the GPR 
Architecture

• Example: Loop Unrolling
LD     R1, R2, R3

ADD R4, R1, R5

ST     R4, R6(0)

LD     R7, R8, R9

ADD R10, R7, R11

ST     R10, R12(0)

UNSCHEDULED

LD     R1, R2, R3

LD     R7, R8, R9

ADD R4, R1, R5

ADD R10, R7, R11

ST    R4, R6(0)

ST    R10, R12(0)

SCHEDULED
IADIS-Applied Computing 2005 Algarve, Portugal 22-25 February 2005

Instruction Level Parallelism of Stack Code Under Varied Issue Widths and Branch Prediction

Stack Architecture Type Model

NOS

TOS

Main
memory

Instruction
register

Stack instruction word

NOS

NOS

TOS

Main
memory

Instruction
register

Stack instruction word

NOS

Top of Stack

(Next  of Stack) ALU

• Does not contain visible general purpose registers 
• Operands in the stack with implied addressing mode  
• ALU can take two operands simultaneously and

write the result back to TOS, e.g. ‘add’

Stack Processor

• Not possible to schedule code in same way
due to implicit addressing

• Example: C = A + B in the stack 
architecture

A

B

D

TOS

NOS

BEFORE 

0X00F312E8

0X00F312E4

0X00F312E0

ADDRESS

C

D

TOS

NOS

AFTER

0X00F312E8

0X00F312E4

0X00F312E0

ADDRESS

About Stack Addressing

• Instruction consumes TOS and NOS items
and writes back to NOS

• NOS becomes new TOS
• IF NOS address (i.e. destination address)

specified then can determine source operand 
addresses

• Stack code can now be scheduled statically
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Example

LD1    0

NOT1

LD2

NOT2

UNSCHEDULED

LD1   TOS    

LD2  ((TOS) -4)

NOT1 TOS

NOT2 ((TOS) -4)

SCHEDULED with
re-naming instructions

Unscheduled
ADDRESS

0X00F312E8

0X00F312E4

0X00F312E0

LD1

0X00F312EC

0X00F312F0

0X00F312F4
TOS

0X00F312E8

0X00F312E4

0X00F312E0

NOT1

0X00F312EC

0X00F312F0

0X00F312F4
TOS

0X00F312E8

0X00F312E4

0X00F312E0

LD2

NOT1

0X00F312EC

0X00F312F0

0X00F312F4

TOS

0X00F312E8

0X00F312E4

0X00F312E0

NOT2

NOT1

0X00F312EC

0X00F312F0

0X00F312F4

TOS

(1)

(1)

(2)

(3) (4)

Scheduled
ADDRESS

0X00F312E8

0X00F312E4

0X00F312E0

LD1

0X00F312EC

0X00F312F0

0X00F312F4
TOS

ADDRESS

0X00F312E8

0X00F312E4

0X00F312E0

LD2

OR1

0X00F312EC

0X00F312F0

0X00F312F4
TOS

0X00F312E8

0X00F312E4

0X00F312E0

LD2

LD1

0X00F312EC

0X00F312F0

0X00F312F4
TOS

ADDRESS

ADDRESS

0X00F312E8

0X00F312E4

0X00F312E0

OR2

OR1

0X00F312EC

0X00F312F0

0X00F312F4
TOS

(1) (2)

(3) (4)

Advantanges

• Minimise stalls by scheduling instructions 
in delay slots

• Can also queue multiple writes to same 
stack address by exploiting destroy-on-read 
properties of stack

Example: Unrolled loop
LD1   1

LD2    2

NOT1

NOT2

ST1    1

ST2     2

Example: Unrolled loop With 
Register Renaming 

LD1

ADDRESS

0X0012480C

0X00124808

0X00124804

MAPPING

REGISTER-RENAMING TABLE

(i)

LD1 LD2

ADDRESS

0X0012480C

0X00124808

0X00124804

MAPPING

REGISTER-RENAMING TABLE

(ii)

LD1 NOT1

ADDRESS

0X0012480C

0X00124808

0X00124804

MAPPING

REGISTER-RENAMING TABLE

(iii)

NOT1 NOT2

ADDRESS

0X0012480C

0X00124808

0X00124804

MAPPING

REGISTER-RENAMING TABLE

(iV)

NOT1

ADDRESS

0X0012480C

0X00124808

0X00124804

MAPPING

REGISTER-RENAMING TABLE

(V)

ADDRESS

0X0012480C

0X00124808

0X00124804

MAPPING

REGISTER-RENAMING TABLE

(Vi)
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Conclusions

• Advantages:
– Can schedule stack code statically to minimise pipeline

stalls
– Multiple writes can be queued to same stack address

• Disadvantages:
– Need to specify destination address in instruction
– Must calculate destination addresses during compilation 

– time consuming
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SCTL: a StateChart Transformation 
Language for Test Sets Reduction

Nicolas GUELFI, Benoît RIES
University of Luxembourg

ERCIM Workshop, Porto, Portugal
Aug. 31 – Sept. 1, 2005 2

Context and Problematic

� Work Context
� SE2C

� SESAME Project
� Industrial Partner

� Kind of systems : Embedded Systems (car, 
plane, PDA, etc.)

� Activity: Specification-based Testing

� Problematic
� Exhaustive test often impossible
� Difficult selection of test cases to perform

3

Objectives

� Aim
� Improve the test phase

� Approach
� Create an abstract specification that allows 

generating reduced test sets.

� Formalisms
� Behaviors specifications : statecharts
� Abstraction: model transformation language

4

Plan

� Approach: Statecharts Reductions for Test
� RTSL: a Statechart Model
� SCTL: a Statechart Transformation 

Language
� SCTT: Prototype and Case Study
� Conclusion

5

Approach for the Reduction of 
Statecharts for Testing

IOLTS

RTSL

TestSet

ts1
sc1

lts1
lts2

ts2
sc2

sem(sc1)

sem(sc2)

reduce(sc1)

reduce(lts1)

specTestGen(sc1)

specTestGen(sc2)

reduce(ts1)

semTestGen(lts1)

semTestGen(lts2)

6

Statecharts Reduction for Testing

"Abstraction is the identification 
of important aspects of a phenomenon

while ignoring its details."[ghezzi02]

� Different Kinds of Abstractions
� Structural Abstraction
� Functional Abstraction
� Communication Abstraction
� Data Abstraction
� Temporal Abstraction
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7

Plan

� Approach: Statecharts Reductions for Test
� RTSL: a Statechart Model
� SCTL: a Statechart Transformation 

Language
� SCTT: Prototype and Case Study
� Conclusion

8

RTSL – a Model of Statecharts

� Objectives
� Select an abstract syntax

1. Defined with statecharts concepts
2. Having formally defined properties
3. Having a relation of states accessibility

� Select a semantics
1. Defined in a formal framework of 

specification-based testing

9

� subi
� subi(rooti) = {s1, s3, s4}
� subi(s1) = {s2}

� typei
� typei(root) = OR
� typei(s1) = OR
� typei(s2) = BASIC
� typei(s3) = BASIC
� typei(s4) = BASIC

� defaulti
� defaulti(rooti) = s1
� defaulti(s1) = s2

RTSL – Abstract Syntax

A statechart sci is a 7-uplet
sci = (Si, Ei, Ai, Ti, subi, defaulti, typei)

Where
�Si: states
�Ei: events
�Ai: actions
�Ti w Si × (Ei > H) × (Ai > H) × Si: transitions
�subi w Si � P(Si): substates function
�typei w Si � {AND, OR, BASIC}: type of states
�defaulti w Si � Si: default state of OR-states

� Si = {rooti, s1, s2, s3, s4}
� Ei = {e2, e21}
� Ai = {e1}
� Ti = {(s1, e2, e1, s3), (s3, e21, e1, s4), (s4, e2, e1, s2)}

10

means that state s1 may be reached 
from state s0 following the transitions which
sequence of events/actions is J

RTSL – Syntax: Accessibility Relation
� Some states possibly inaccessible
� Test Context: useless to keep inaccessible states
� Accessibility relation at the level of the statecharts 

syntax

11

RTSL - Semantics
� Semantics given in input/output labeled transition 

systems (IOLTS)
� Existing Transformation [Gnesi01]

� Hierarchical Automates (HA) � IOLTS

� Syntax of HA close to RTSL

� Transformation Algorithm
� Statechart RTSL � HA

12

Plan

� Approach: Statecharts Reductions for Test
� RTSL: a Statechart Model
� SCTL: a Statechart Transformation 

Language
� SCTT: Prototype and Case Study
� Conclusion
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13

SCTL – a statecharts 
transformation language

� 8 statecharts transformations belonging to 2 
categories of abstraction
� Structural 

� Delete inaccessible states
� Abstract a state
� Extract a state
� Delete a state
� Delete a transition
� Modify a default state

� Functional
� Modify initial states of a statechart
� Ignore an event

14

SCTL - Semantics: delTrans
� delTrans transformation deletes a transition
� delTrans w SC × SC × T is a relation defined by the 

assertion:

15

SCTL - Semantics: abState

16

� abState transformation abstract the internal behavior 
of a state.

SCTL - Semantics: abState (cntd)

17

SCTL - Semantics: Limitations abState

18

Plan

� Approach: Statecharts Reductions for Test
� RTSL: a Statechart Model
� SCTL: a Statechart Transformation 

Language
� SCTT: Prototype and Case Study
� Conclusion
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19

SCTT - Prototype

� Prototype integrated to the UML MagicDraw tool
� | 2 000 lines of codes
� Implement the 8 SCTL transformations
� Transformations are performed on the selected

element and the active opened diagram
� Case study using this prototype

20

Case Study 1/3
H H H
H H H
H
H

21

Case Study 2/3

H H H
H H H
H
H

22

Case Study 3/3

23

Conclusion
� Adaptation of a model of statecharts (RTSL)

� Abstract syntax
� Semantics (RTSL � HA � IOLTS)

� Definition of a transformation language (SCTL) for 
RTSL statecharts
� SCTL transformations defined with the elements of RTSL 

abstract syntax
� 8 transformations based on structural and functional

abstractions
� Perspectives

� Validation of SCTL transformations regarding the
semantics of RTSL statecharts

� Take into account real-time concepts for safety-critical
systems

� Extension of the RTSL syntax
� Definition of additional transformations to SCTL

24
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25

SCTL - Syntax
� SCTL Grammar in BNF:
<transfo>  ::= <struct_transfo>

| <funct_transfo>
| <transfo> . <transfo>

<struct_transfo> ::= delUnreach( <statechart> , <statechart> )
| exState( <statechart> , <statechart> , <state> )
| abState( <statechart> , <statechart> , <state> )
| delTrans( <statechart> , <statechart> , <trans> )
| …

<funct_transfo>  ::= startWith( <statechart> , <statechart> , <state> )
| ignoreEvt( <statechart> , <statechart> , <event> )

� Examples:
� delTrans(SC0, SC1, T5).delUnreach(SC1, SC2)
� ignoreEvent(SC7,  SC8, E2).delUnreach(SC8, SC2)
� exState(SC3, SC6, S21)

� …

26

� States Hierarchy (substates, superstates)
� Basic state, AND-state, OR-state
� Default states
� Initial states
� Transition 
o event/action
� Configuration

� Basic Configuration

Statecharts – Basic Concepts

{root, s1, sx, sy, sz, s5, s8, s9}

{s5, s8, s9}

{root, s1, sx, sy, sz, s5, s6, s9}

{s5, s6, s9}

{root, s10, s15}

{s15}

{root, s11, s12, s13}

{s13}

{root, s11, s12, s14}

{s14}{s16}

{root, s16}



Test Method For Real-Time Embedded
systems

O.Koné, J.P.Bodeveix, R.Bouaziz
CNRS/IRIT, Univ. Paul Sabatier - Toulouse

Porto, 30/08-03/09 2005

Outline

1 Testing vs Dependability
Testing Embedded Systems
Testing Real-Time
Complexity due to Real-Time

2 Our approach
Main features
Symbolic Reachability
Local Exploration vs Dependability requirement

3 Illustration
The specification model
The dependability requirement
The computed tests patterns

Testing embedded systems
Check system dependability before deployment

1’

1

Entity A Entity B

Network

End System

• The system interacts with the environment through gates
or ports (1 and 1’)

• We consider black box systems
Implementation: hardware software component chip

Methodology: Black box / Functional testing
We model and test only the functional behaviour

Test architecture Spec. model

1

1’

Tester
IUT

Implementation
Under Test

a a

c d

• We model (and test) the observable functional behaviour
No structural testing, ...

• Objective: to automate tests comuptation from the system
specification model

Testing real-time
How to compute tests from real-time specification ?

T I

?a,1

!b,3

!a,1

?b,3

a,1

b,3

Specification Tester

• Manage time with clocks:
x:=0 (reset); x=2, x<3 (constraints)

• Test case (test pattern / test scenario):
(x:=0)→(x=1,!a;y:=0)→(y=3,?b) →PASS.

• How to compute test patterns from a real-time
model / specification ?

Complexity involved with Real-Time
A sample timed automaton

S0

S

23

1

S S

b, (y=1)?

c, (x<1)?

a, (y<1)?

d, (x>1)?

y:=0

y:=0

c, (y>0),(x<1)?

a,(x>0)?



Behaviour computation involves combinatory
explosion

The behaviour (region) graph of the timed automaton

x=y=0
a

a

a

b
b

c a
a

a a

b

d

d

d d

d

d
d d

S1 S2

S3S3S3

S1S1

S0

S3

y=0, x=1 y=0, x>1 1=y<x

x>1, y>11=y<x0<y<1<x0<y<x<1

0=y<x<1

Our approach
Main features: We Combine Symbolic and Local Analysis

Objectives :

• Compute / explore a behaviour graph
• Select some test path
• Handle combinatory explosion

For that:
We Combine Symbolic Reachability with Local Exploration

Symbolic reachability
A behaviour graph with reduced size

d

S1

S3S3

y=0, x>1

ba

c

a

d

b

a

x=y=0

S0

S1
0=y<x 0<y<x<1 y>0, x>1

S2

1=y<x

We have saved state space ... and memory !

Local or partial exploration
Dependability requirement

xy

f

a

gh

z
(t2)

(t3)

(tn)

(t1)

Breadth

Depth

Local part

Dependability requirement:
f→ g→

Local or partial exploration
Dependability requirement

xy

f

a

gh

z
(t2)

(t3)

(tn)

(t1)

Breadth

Depth

Local part

Dependability requirement:
f→ g→

Design tests from dependability requirements
Test search is guided by DR

A Dependability Requirement (DR) is

• Such requirement considered as critical in the system
behaviour.

• The example below:
After input a is received, output b must be computed within
3 time units!

• Of high importance in the system design and test.

Tests Design is based on
• Synchronisation of Spec and DR

• Searching the local part of Spec that meet DR.



Design tests from dependability requirements
Test search is guided by DR

A Dependability Requirement (DR) is

• Such requirement considered as critical in the system
behaviour.

• The example below:
After input a is received, output b must be computed within
3 time units!

• Of high importance in the system design and test.

Tests Design is based on
• Synchronisation of Spec and DR

• Searching the local part of Spec that meet DR.

Illustration of the approach
A generic example of embedded system

• Interactions L = {a, b, c, d , e}.
• ?a (input) System initialised in the environment
• ?b (input) Signal detected OK from the environment
• !c (output) Environment is working OK
• !d (output) Warning signal
• !e (output) Emergency signal

• Clocks
C = {x , y}

• States
S = {S1, S2, S3, S4, S5, S6, S3S4, S8}
S1 Starting state

Illustration of the approach
The system specification model

?a

x:=0;y:=0

 !d

 ?b

2<x<4;x:=0

 ?b

x>4;x:=0

y>2

 !c

?b

 !c
y>2

y<5

5<y<10

 !e

 !e

5<y<10

y<5
 !d

x=4;x:=0

S1 S2

S3

S4

S5

S6

S3S4 S8

Illustration of the approach
The model of dependability requirement

?a y:=0

y<5

!d

?a y:=0

!e

REJECT REJECTACCEPT ACCEPT

otherwise

otherwise

otherwise otherwise otherwise

5<y<105<y<10
!e

L1L1

L2
L2

!d
y<5!c

y>2

Illustration of the approach
The model of the test system

S1,L1

x=4;x:=0

S2,L2

S3,L2 S4,L2 S5,L2

INCONCLUSIVE

!a

!b
!b

PASS

FAIL

5<y<10

?e

?otherwise

?c
y>2

y<5
?d

?e
5<y<10

?d
y<5

?otherwise

?d
y<5

?c

y>2

?e

5<y<10

x>4;x:=0

!b

?otherwise

?otherwise

x:=0

2<x<4;x:=0

y:=0

Illustration of the approach
Input and output of the test computation process

?a

x:=0;y:=0

 !d

 ?b

2<x<4;x:=0

 ?b

x>4;x:=0

y>2

 !c

?b

 !c
y>2

y<5

5<y<10

 !e

 !e

5<y<10

y<5
 !d

x=4;x:=0

S1 S2

S3

S4

S5

S6

S3S4 S8

?a y:=0

y<5

!d

?a   y:=0

!e

REJECT REJECTACCEPT ACCEPT

otherwise

otherwise

otherwise otherwise otherwise

5<y<105<y<10
!e

L1L1

L2
L2

!d
y<5!c

y>2

An example of successfull test is :
(!a;x:=0;y:=0) → (!b,x=4;x:=0) → (?e,5<y<10)
→ PASS.
An example of failure execution is :
(!a;x:=0;y:=0) → (!b,x>4;x:=0) → (?e,y=10)
→ FAIL.



Illustration of the approach
Input and output of the test computation process

?a

x:=0;y:=0

 !d

 ?b

2<x<4;x:=0

 ?b

x>4;x:=0

y>2

 !c

?b

!c
y>2

y<5

5<y<10

 !e

 !e

5<y<10

y<5
 !d

x=4;x:=0

S1 S2

S3

S4

S5

S6

S3S4 S8

?a y:=0

y<5

!d

?a y:=0

!e

REJECT REJECTACCEPT ACCEPT

otherwise

otherwise

otherwise otherwise otherwise

5<y<105<y<10
!e

L1L1

L2
L2

!d
y<5!c

y>2

An example of successfull test is :
(!a;x:=0;y:=0) → (!b,x=4;x:=0) → (?e,5<y<10)
→ PASS.
An example of failure execution is :
(!a;x:=0;y:=0) → (!b,x>4;x:=0) → (?e,y=10)
→ FAIL.

Illustration of the approach
Input and output of the test computation process

?a

x:=0;y:=0

 !d

 ?b

2<x<4;x:=0

 ?b

x>4;x:=0

y>2

 !c

?b

!c
y>2

y<5

5<y<10

 !e

 !e

5<y<10

y<5
 !d

x=4;x:=0

S1 S2

S3

S4

S5

S6

S3S4 S8

?a y:=0

y<5

!d

?a y:=0

!e

REJECT REJECTACCEPT ACCEPT

otherwise

otherwise

otherwise otherwise otherwise

5<y<105<y<10
!e

L1L1

L2
L2

!d
y<5!c

y>2

An example of successfull test is :
(!a;x:=0;y:=0) → (!b,x=4;x:=0) → (?e,5<y<10)
→ PASS.
An example of failure execution is :
(!a;x:=0;y:=0) → (!b,x>4;x:=0) → (?e,y=10)
→ FAIL.

Summary

• Towards full automation of tests computation and
deal with industrial embedded systems
(currently concerned with aerospace industry)

• Our approach handles the model size/complexity by
combining symbolic and local analysis.

• Outlook
• Implement a prototype tool
• Investigate security issues, not covered by spec. model.
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From message queue to ready queue

Case study of a small, dependable synchronous blocking channels API
“Ship & forget rather than send & forget”

Øyvind Teig
Autronica Fire and Security, Trondheim

(A UTC Fire and Security company)
http:\\home.no.net\oyvteig
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Abstract

• CSP style synchronous interprocess communication
• on top of a run-time system supporting SDL asynchronous

messaging
• Unidirectional, blocking channels are supplied
• Benefits are

o no runtime system message buffer overflow
o "Access control" architectural design

• A pattern to avoid deadlocks is provided
• The message buffer is obsoleted, and a ready-queue-only

could be asked for.
• May be formally verified with the CSP process algebra.
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1. Introduction

2. SDL and CSP

3. Blocking

4. Access control of other processes

….

All these points will be implicitly covered in the next pages
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5. The layered architecture

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 5

6. The channels C API abstraction
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7. Semantics of asynchronous messages
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8. Semantics of synchronous channels
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9. “From message queue to ready queue”

• Explained with figures above, i.e.:
• Message queue(s) not needed any more
• Ready/scheduling queue(s) all we need
• But we stuck to what we had!
• Of course, timer queue(s) needed
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10. Deadlock avoidance

• Observe that we cannot
deadlock on erroneous
use of semaphores, we
have none

• Only on mutual waiting
for each other in a cycle

• The pattern above
requires Master to treat
Slave-only after "Poll
me!", no other process

• (An asynch channel equals an overwritebuffer composite process
with size 1 communicating over synchronous channels)
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11. Coding examples (1)

• Non-preemptive "return" to scheduler gives one common stack
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4. Access control of other processes (more)
• In addition to the "channel switch" mentioned we have:
• A process needs to obey the protocol semantics, it does not need

to know the semantics of the other processes' internal behaviour
• Only have to look at this process to understand what service it

offers its environment. That service is independent of its
environment - its behaviour is the same anywhere

• This is WYSIWYG semantics
• Processes become dependable software components: no

unpublished interactions (side-effects) between CSP parallel
processes

• It also shows the compositional semantics of CSP
• Erroneous use of semaphores - not WYSIWYG!
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11. Coding examples (2)
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12. Formal basis of the architecture

• The channel layer API discussed here was modelled on macros used by
the code generator of the SPoC occam-to-C compiler

• Based on occam, which is a running subset of CSP
• The CSP process algebra "discovered" by this used through occam
• However, the CSP may be used to model and verify any system
• This would be out of reach (expensive), and not very interesting for us

(small system and use of known software patterns).
• However, other process algebras, like FSP, analysed with the free

LTSA tool, may also be used.
• Modelling asynchronous systems (albeit with finite size buffers, which

makes them synchronous when buffers are empty/full) is also possible
with Promela and the free SPIN tool

From message queue to ready queue, Teig, Ercim05, Porto

Case study of a small, dependable synchronous blocking channels API. “Ship & forget rather than send & forget”.
Øyvind Teig, Autronica Fire and Security, Trondheim (A UTC Fire and Security company), http:\\home.no.net\oyvteig

Page 14

13. Discussion (1)

• "CHAN_CSP" adds about 2 KB of program memory with some
IN, ALT and OUT macros used.

• Execution time overhead and memcpy, discussion
• Processor cycles for ALT, discussion
• SDL runtime system is about 20 KB
• But even with 128 KB of code space (or, soon 256 KB – nice for

an 8 bit machine) and 16(11) MHz clock, the added well-being of
knowing that the system never overflows the message queue or
sends unwanted messages into a processes, outweighs the
overhead.
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13. Discussion (2)

• This author used occam, SPoC and a C CSP library for15 years,
• "Ship & forget" rather than "send and forget"
• Communication states need to be learned
• Complexity and engineers’ preferences and background.
• If OO has had its way, the CSP (or the like) also has a way to go.
• Grasping the communicating state machines is individual.
• A channel most probably seems as belonging to OSI network (3)

or transport (4) layer, and certainly not the application layer (7).
• Some programmers learn this methodology easily.
• However, when the communication infrastructure code once has

been set up, it tends to stay stable and work.
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13. Discussion (3)

• Size of the present "ready queue" is a matter of finding the
maximum scheduling incidence volume.

• When maximum has been found, there is no room for further
surpises, since the value is a function of the number of channels
and processes, not the communication pattern.

• A subset of?) Ada available for microcontrollers of this type
• Java (where CSP libraries are available).
• Or hope that result of ongoing occam research will hit industry

some day.
• In the meantime, we could use solutions as the one discussed

here, which really is quite dependable, even if it is based on
hand-written C.
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14. References (1)

• The edit-by-anyone internet based Wikipedia dictionary has been
used for some essential computer science terms.

• Wikipedia articles often point to more academic sources.

• The last reference (to www.wotug.org) has been added since it is
a good starting point for both theory and practice of this field of
computer science.
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An Embedded Future for Distributed 
System Architectures?

Trygve Lunheim, Amund Skavhaug

Department of Engineering Cybernetics

Norwegian University of Science and Technology

Web Services?
<XML>

CORBA?

D/COM?
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Workshop focus on..
Dependable Software Intensive Embedded Systems

Software Intensive implies demanding applications
• Multimedia-rich content/capabilities
• Large CPU and memory requirements

These embedded systems are becoming commonplace, such as
• Industrial applications/networks with multimedia capabilities
• Entertainment centres, multimedia hubs in homes
• DVD-recorders and –players
• Flatscreen TVs
• Gaming consoles
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Embedded system capabilities

Some of these ”embedded systems” are becoming more powerful than our 
personal computers!

Next generation PlayStation processor, Cell architecture, has
• PowerPC like core that does thread scheduling, runs OS (e.g. Linux)
• Another 8 parallel processor cores for signal processing/multimedia
And this is only the initial processor of this architecture..

While it’s true that most embedded systems are designed with a minimum
of computing resources in order to reduce cost, there is still a huge 
potential in utilizing the processing power of these new systems, if
they were to become connected.
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Outline
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• Distributed operating systems
• Middleware
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Background

A few years ago there was a lot of talk about how appliances would soon
become connected and ”intelligent”. The refrigerator could keep track
of when the milk went out of date, and put in an order for fresh milk 

and other groceries through the Internet.

It seems we’re not quite there yet (at least not everywhere!), but maybe
we’re getting there in the future.

Our question: Why haven’t we reached our goal yet?

(IF letting your refrigerator handle your credit card is our goal...)
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Industrial networks

In manufacturing plants, oil platforms and other industry, we have seen
• Use of new, media-rich technologies, with high bandwidth 

requirements
• Increased use of COTS technologies (Ethernet, TCP/IP..)
• A need for horizontal and vertical integration of systems:

Subsystems that are used within the organization often don’t play well
together, due to their heterogeneous nature

Although the applications for industrial systems and consumer products
are very different, many of the requirements will often be similar.

I.e. security, reliability, real-time requirements..
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Predicting the future
Many different standards and architectures exist, for:
• Parallel computing
• Distributed objects, software components
• Fault tolerance, load sharing

Problem:
no ubiquitous standard for distributed real-time and embedded systems

Purpose of the paper:
to review some trends in distributed and embedded computing, and
make some predictions about the future of distributed architectures in
embedded systems
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Outline

• Background
• Distributed operating systems
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Distributed operating systems

Traditionally, research on distributed support for general operating 
systems has been concerned with achieving increased performance.

The support for distributed applications has evolved through stages:
• Support for transactions
• Message passing (MPI)
• Shared memory (uniform / non-uniform memory access)

However: General operating systems are not designed for the real-time or 
embedded systems. Although they may well be used for some such
applications, it is often not possible or even desirable to do so, due to
pricing, memory requirements etc..
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Real-time operating systems

Real-time requirements => low overhead on communication and CPU

For example: VxWorks, LynxOS, QNX, RT-Linux...
Often lacking in support for distributed applications directly in the OS
But support for communications, e.g. TCP/IP, Ethernet.

Distributed applications are often built using TCP/IP socket 
communication, even if this is at a lower abstraction layer than
desirable.
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QNX Neutrino

Real-time microkernel OS, 
IPC based on message-passing
MsgSend()/MsgReceive()/MsgReply()

Offers efficient message passing in a distributed system transparently:
QNet protocol works between tightly coupled machines (trusted)
Sharing of namespace allows for sharing of resources and MP:

Supports QoS over multiple networks, load balancing over links
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QNX MP example, local
Server process:
attach = name_attach(NULL,”mydev”, 0);
while (1) {

rcvid = MsgReceive(attach->chid, &msg, sizeof(msg), NULL);
if(rcvid == our_msg) { printf("Server received %d \n", msg.data);

MsgReply(rcvid, EOK, 0, 0);
}

}
Client process:
fd = name_open(”mydev”, 0) ;
for(i=0;i<5;i++) {

MsgSend(fd, &msg, sizeof(msg), NULL, 0);
}
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QNX MP example, global namespace
Server process:
attach = name_attach(NULL,”mydev”, NAME_FLAG_ATTACH_GLOBAL );
while (1) {

rcvid = MsgReceive(attach->chid, &msg, sizeof(msg), NULL);
if(rcvid == our_msg) { printf("Server received %d \n", msg.data);

MsgReply(rcvid, EOK, 0, 0);
}

}
Client process:
fd = name_open(”/dev/name/global/mydev”, 0) ;
for(i=0;i<5;i++) {

MsgSend(fd, &msg, sizeof(msg), NULL, 0);
}
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Native MP vs Open standards

QNX native message passing works well, when you are developing a
distributed application and you want to run it on QNX nodes.

This is often not the case.
It’s proprietary, so you need to use a particular product (QNX).
You may want to use other operating systems, or retrofit an older

application, not using QNX MP.

Using a particular OS mechanism or even specialized hardware to
implement distributed applications implies homogenity, while a large 
number of systems are inherently heterogeneous.

Tight coupling of processes, but what if we want/need loose coupling?
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• Background
• Distributed operating systems
• Middleware
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Middleware

Middleware enables distributed processing across heterogeneous
architectures and/or networks

Examples of middleware platforms include
• D/COM, OPC
• J2EE
• .NET
• CORBA
• GRID/Web Services
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Middleware cont’d

There are many types of middleware, with different application areas, 
qualities and shortcomings, such as

• Transactional middleware
• Message-oriented middleware
• Component-based middleware
• Model-driven middleware
• Adaptive/reactive middleware
Component middleware enables reusable services to be composed,

configured and installed, to create applications rapidly and robustly.
Interfaces are defined between components, and infrastructure services 
are built into the middleware. Examples include COM, J2EE and
CORBA Component Model (CCM).
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Middleware properties

We’ll consider some important properties of middleware architectures, 
with respect to embedded systems

• Meta-information handling
• Support for Real-time services
• Security support
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Outline

• Background
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• CORBA vs GRID technologies
• Conclusion
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Common Object Request Broker Architecture

CORBA Component Model introduces components, with interfaces 
(facets), hooks for dependencies and attributes. Interfaces are defined
using CORBA’s Interface Description Language (IDL).

The component model facilitates software development through reuse of
software, and fault tolerance through replication of components (FT 
CORBA).

We have not seen widespread use of CORBA in embedded systems yet..
• Has gone through several revisions
• Implementations are still considered large/unwieldy
• Difficult to set up and use?
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GRID, a service-oriented architecture

Built on Web Services, for supporting collaboration between research
institutions, and sharing of computing resources. Typically used to
solve large computational tasks, using a dynamic collection of clusters 
that are distributed. Applications can be built using the Globus Toolkit

Service-oriented architecture:
”standard interfaces and protocols that allow developers to encapsulate
information tools as services that clients can access without knowledge
of, or control over, their inner workings”

GRID technologies enable a separation of concerns between discipline-
specific content and domain-independent software and hardware
infrastructure. The general nature of these services are of interest to us.
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Meta information in CORBA

• Part of OMG Model Driven Architecture
• Meta-Object Facility (MOF) provides a framework for managing any

type of metadata in CORBA
• Layered architecture with a meta-modeling layer and an object 

modeling layer to tie together metamodels and models
• OMG defined XML Metadata Interchange (XMI) for representing and 

exchanging metamodels
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Meta information in GRID

Monitoring and Discovery System (MDS)
Useful information
• Characteristics of computing devices
• Characteristics of infrastructure
• Policy

Grid Laboratory Uniform Element (GLUE)
Implemented in XML for MDS
LDAP and SQL versions also, used in older versions of MDS
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GLUE Schema in UML
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Real-time capabilities in middleware

CORBA Real-Time implementations exist, e.g. TAO, CIAO
These include support for timers and real-time scheduling, as well as 

support for Quality of Service in networks.

In the Globus Toolkit there is extended support for QoS at the application
level, using the GARA architecture. So it is possible to do reservation 
for high priority applications. Better support for real-time applications 
should be worked on in the future.

However: The underlying support for guaranteed end-to-end QoS in IP 
networks is still missing, i.e. there is no standard that is generally
agreed upon.
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Security

Security has often been overlooked in embedded and real-time systems,
and many times treated as an afterthought.

Fortunately it has become more common to consider security in all levels 
of the system, and from the earliest stages of development. Threats and
means to security must be defined, and the correct methods to reach an 
assurance level must be found.

This may be a long and cumbersome process, leading to increased cost.

However:
The consequences of not doing things right when it comes to security
may be worse.
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Security in CORBA and GRID

• Security was not originally a part of the CORBA specification, but
added afterwards

• SecSIG, a Special Interest Group within OMG defines security in
CORBA, as a core service

• For example, the TAO implementation of CORBA implements some
of the security functionality in the CORBA specification, providing
secure transport where needed, using Secure Socket Layer (SSL)

The Grid Security Infrastructure supports security at message and
transport layers, using Transport Level Security (TLS).

In the future, Role Based Access Control (RBAC) should play an
important role in distributed applications.
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CORBA vs GRID middleware
Some critics have claimed that Web Services/SOAP brings nothing new, when it 

comes to middleware. CORBA, which has been used for years, is more
efficient and better defined.

Both will probably play a role in the future. CORBA has been around for longer,
is more well-defined/standardized, and is probably more efficient, both in
terms of processing/memory as well as communication.

However, GRID technology has a lot of momentum and support from big
players in the industry. It also has more potential to become ubiquitous.

For some applications it is probably better to use something like CORBA, but 
for providing a general interface to the outside world it makes sense to use 
something like SOAP or WSDL. This also holds for embedded systems.
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Outline

• Background
• Distributed operating systems
• Middleware
• CORBA vs GRID technologies
• Conclusion
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The future?

Looking into the crystal ball, there are some strong trends towards:
• Increased integration of systems and services
• More computing power, higher bandwidth etc.
• Increased use of COTS technologies

Future work
• Finding exact requirements of distributed architectures for embedded systems
• Specifying the minimum set of functionality in order to implement these on

embedded systems, in terms of size and processing requirements
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Conclusion

• Embedded systems are soon becoming powerful enough to perform in
complex distributed environments

• There is a need for standards to achieve proper discovery,
configuration, monitoring and scheduling within such an environment

• Advanced distributed architectures and middleware are large and
require resources and effort. Probably because distributed computing is
complex
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Questions?
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Motivation

� Federated Systems increase cost and weight
� Therefore, there is a tendency towards Integrated Systems

� Dependable Embedded Components & Systems (DECOS)
� Integrated Modular Avionics (IMA) in Airbus A380

� Advantage: Sharing of Resources
� Communication (Shared bandwidth, less wiring)
� Computation (Several subsystems on one node)
� I/O Resources (e.g., sensors - better redundancy)

� New Challenge: Allocation of distributed subsystems
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Example: Node of DECOS Architecture

Safety Critical
Connector

Unit

Complex
Connector

Unit

Basic Connector Unit

Application
Computer

(Safety Critical
Subsystem)

Primary Operating System

Secondary
OS 1

Secondary
OS 2

Job 1 Job 2

TTP, FlexRay, TT Ethernet, ...

Porto, September 1, 2005
Georg Weissenbacher

4

ARC Seibersdorf research GmbH INFORMATION TECHNOLOGIESINFORMATION TECHNOLOGIES

seibersdorf research
An enterprise of the  Austrian Research Centers.

Role of Allocation within DECOS project

� Allocation/Scheduling is part of development methodology
� MDA: Platform Independent Model vs. Platform Specific

Model
� Tasks can be allocated to any node as long as constraints

are fulfilled:
� Resource Constraints
� Dependability constraints
� ...

� Optimization function is used to find optimal result
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Allocation of Distributed Subsystems (1)

Airbag-
control

ABS

Steer-by
-Wire

ESP

Break-by

Wire
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Allocation of Distributed Subsystems (2)

� Currently, task seems trivial:
� Software is developed for

manufacturer-specific components
� No choice to locate software “elsewhere”

� Integrated Systems increase flexibility:
� Uniform hardware nodes (often from consumer domain)
� Software may run on any chip 

(provided that constraints are fulfilled)
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Allocation is NP complete

Node 1 Node 2Task 1 Task 2 Task 3

Node 1

Node 2

Task 1

Task 2

Task 3

1.

Task 1

Task 2

Task 3

2.

Task 1

Task 2

Task 3

3.

Task 1

Task 2

Task 3

4.

Task 2

Task 1

Task 3

5.

Task 2

Task 3

Task 1

6. 7.

Task 3

Task 1

Task 2

…
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possibilities
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Symmetric Solutions (1)

Node 1 Node 2Task 1 Task 2 Task 3
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Task 2

Task 3
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Task 1

Task 2

Task 3

2.

Task 1

Task 2

Task 3
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Task 2
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4.

Task 2

Task 3
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6. 7.

Task 3

Task 1

Task 2

…

3 replicated 
(equivalent) 

tasks

2 replicated 
(equivalent) 

nodes

3 & 4 symmetric because
nodes are equivalent

2 & 6 symmetric 
because tasks are 
equivalent

Task 2

Task 1

Task 3
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Symmetric Solutions (2)

� Significant reduction of number of considered solutions!

� How can we implement this efficiently?

Node

Node

Task

Task

Task

Task

Task

Task
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1. Find equivalence sets for Tasks and Nodes

2. Process one Task Equivalence Set (TES) after another

Outline of Algorithm with Equivalence Sets (1)

Node 1 Node 2
Task 3Task 2Task 1
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Outline of Algorithm with Equivalence Sets (2)

� Allocate the first element Task 1 on Node 1

Node 1 Node 2

Task 3Task 2Task 1

Node 1 Node 2

Task 3Task 2

� Split Node Equivalence Set

Task 1
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Outline of Algorithm with Equivalence Sets (3)

� If assignment fails (e.g., node has not enough resources to 
host this task), backtrack.

� Backtracking means: 
� consider a different NES
� If no NESs are left to consider, reconsider the TES that 

was processed before the current TES
� If this fails, too, there is no valid assignment

� But: Elements of an Equivalence Set are never considered 
separately, therefore not all allocations are considered
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Outline of Algorithm with Equivalence Sets (4)

� After each assignment, try to recombine NESs:

Node 1 Node 2

Task 1 Task 2

Node 1 Node 2

If Task 1 and Task 2 are equivalent and 
Node 1 and Node 2 are equivalent

Task 1 Task 2
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Complexity of the Allocation algorithm (1)

� Processing of each single TES is basically a combination 
(order of tasks is ignored) with repetition (because nodes 
are “put back” into the pool).

� Choose k elements from a set of n:
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Complexity of the Allocation algorithm (2)

� We can never be sure if recombination is successful. 
Therefore, consider worst case that there are no node 
equivalence sets

� In step i, si denotes the size of the current TES, and ri
denotes the number of NESs:

� �
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Complexity of the Allocation algorithm (3)

� Overall complexity (k TESs have to be considered):
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� Example:
� Steer-by-wire system
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Example: Steer-by-Wire (1)

� Driver_Assistant: Receives input from sensors and adjusts it
� Steering_Algorithm: Determines analogue value used to

control the mechanical steering system
� Steering_Rack_Sensor: Provides information about forces
� Steering_Rack_Control: Controls turning angle of wheels 

using the values provided by Driver_Assistent
� Force_Feedback: Provides haptic feed-back to  driver
� Turning_Angle_Sensor: Measures and provides current angle 

of steering wheel
� Speed_Sensor: Measures and provide current speed of vehicle
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Example: Steer-by-Wire (2)

Task Time
Budget

Number

Turning_Angle_Sensor 270 2 
Speed_Sensor 270 2 
Steering_Rack_Control 130 2 
Steering_Rack_Sensor 110 1 
Steering_Algorithm 110 1
Driver_Assistant 270 1
Force_Feedback 110 1

� 7 tasks, 3 of them replicated: Overall number of 10 tasks
� Allocate to 4 processors (2 equivalence groups)

� Worst case of unoptimized algorithm: 410 (=1048576) 
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Example: Steer-by-Wire (3)

� Optimized: 7 Task Equivalence Set
� Step 1: 2 tasks in equivalence set, assume we have 3 nodes:

W (1,r1,s1)  (3� 2�1)!
2!(3�1)!

 6

� Step 2: 2 tasks in equivalence set, by now 4 different nodes

W (2,r 2,s2)  (4 � 2�1)!
2!(4 �1)!

 10 
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Example: Steer-by-Wire (4)

� Step 3: Similar to step 2, therefore W(3, r3, s3)=10
� Remaining 4 steps: No equivalence classes, therefore 

worst case is equivalent to DFS (44)
� Overall worst case: 6*102*44 = 153600
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Example: Experimental Evaluation

� For given example:
� DFS: 15516 partial assignments
� Optimized: 797 partial assignments

n m k l DFS EDFS 
10 4 7 2 15516 797
10 10 5 5 143089

50
77911

10 10 10 10 223742 22374
2

8 4 4 2 768 33
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Conclusion

� Consideration of equivalent elements reduces search
space

� Can be combined with other optimizations (e.g., variable 
ordering, heuristics)

� But: No magic: Worst case is still exponential
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Introduction

• Many real-time applications have reliability requirements in addition
to timing requirements.

• A fault tolerance mechanism must be chosen so that deadlines are met 
even when a fault occurs

• Many real-time systems uses fault tolerance mechanisms based on
parallel structures, that is, tasks are run on several instances of an
object.  Even if one of the instances should fail, the others will still be
able to complete the task before the deadline. 

• In addition, comparison between the results can be used as an extra 
fault detection mechanism

• However, mechanisms based on parallel structures can be resource
consuming.

3

Introduction
• Fault tolerance mechanisms based on serial structures are less resource 

consuming than those based on parallel structures
• When using these mechanisms, if a fault occurs, the fault is corrected

and the task is rerun. This will, of course, take extra time
• Because of this, it is possible that the extra time used to tolerate a fault 

will cause a deadline miss.
• For these systems, it is important to analyze the timing behavior.  This

analysis can be done in different ways.

• Two methods for this analysis are shown in this presentation:
• A mathematical model
• Simulation
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Introduction

Analytical model
• Precise results
• Once derived, they can often be used on similar systems with little

modifications
• Can be quite complicated
• Not always easy to understand or use
Simulation
• Not precise, but often good enough
• Usually easy to create and understand
• Rare events does not always appear in the results

5

Model of a fault-tolerant system

• Client-Server system
• The server is replicated
• One server replica is running, the others are passive
• If the active replica fails, the state of one of the passive replicas are 

brought up to date.  This is now the new active replica
• The task that was currently running is restarted on the new active

replica.

6

Model of a fault tolerant system, timing

• Fault occurs
• Normal operation

• Fault is detected
• Correction
• Normal operation
• Deadline?
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Analytical Model

• Uses moment generating functions for the distributions
• Method used to derive expressions is similar to the one used to derive

the expression for the busy period in a queuing system
• The moment generating functions used in the expression are:
• M(s) The fault free run-time distribution
• I(s) The fault detection time distribution
• C(s) The fault correction time distribution
• Faults are modeled as if generated by a poisson process with an

intensity of λ
• The expression derived is
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8

Analytical model

• There is a possibility that there will be an infinite number of faults 
while running the same task:

• We can, however, get a good approximation by assuming there will be
a maximum of N faults:

• Or that the task will fail if there are more than N faults:

9

Analytical model

• For the first approximation, the mgf will be
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• For the second approximation, the mgf will be
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10

Simulator, structure

• Uses a simple client-server model as
a base.

• The server is made so it simulates 
the fault tolerant mechanism 
described earlier

• A fault generator is generating faults
at random intervals 

• The run times and other useful data
is sent to an observer, which present
the data in a way that is useful for
later analysis

Client

Server Fault
Generator

Observer

11

Simulator, Client and Fault Generator

• In this system, both the Client and 
the Fault Generator are pure 
generators.

• The Client generates process objects 
that are sent to the Server at regular 
intervals

• The Fault Generator is a generator 
of fault objects.  The intervals 
between faults are drawn randomly
from an exponential distribution.

ClientClient

Server Fault
Generator

Fault
Generator

Observer

12

Simulator, Server

• When a fault object arrives, normal operation is stopped.  The Server
enters the ERROR state, and a fault detection time is drawn

• When the Server receives a process object from the Client, a service 
time is drawn from the service time distribution.  During normal
operation, the process object finishes after this time

• After the fault detection time, the Server enters the CORRECTION
state, and a fault correction time is drawn

• When the fault is corrected, the Server returns to normal operation.  
The service of the process object is restarted

IDLE

BUSY ERROR CORRECTION

process
arrival

finished
service

fault
arrival

fault
detected

fault corrected
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Simulator

• Simulator is implemented in C++, using the ADEVS discrete event 
system simulator framework

• Matlab is used for data analysis

14

Example

• Simple system parameters

• Fault free run-time:  Triangular distribution
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Example

• Mean time between faults:  10000
• Maximum number of faults that can occur before a task fails: 2
• The mgf for the run-time distribution:
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• Number of tasks run by simulator:  100000

16

Results

17

Results

18

Changing the correction time

• A delay of 5 is added to the time used to correct a fault
• The new pdf and mgf:
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Changing the correction time

20

Discussions

Very simple fault mechanism is assumed:
• Independent faults
• All faults can be detected and corrected with the fault tolerance 

mechanism
Other fault classes and behaviors can be modeled
• For most fault behaviors, expanding the simulator is not very 

complicated.
• The difficulty of expanding the analytical model varies depending on 

the modeled behavior
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Assessment of Safety Critical Systems with 
COTS and software of uncertain pedigree 
(SOUP)

Torbjørn Skramstad
Norwegian University of Science and Technology (NTNU)

Det Norske Veritas Research (DNVR)
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Det Norske Veritas (DNV)

X “To safeguard life, property
and  the environment”

X Foundation established 1864. 
Self owned.

X Certification
X Classification
X Consultancy
X Technical services
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X 7 faculties and 53 departments 
X NTNU Library
X Museum of Natural Science and Archaeology

X 40 000 applicants each year, 5 500 of these admitted

X 20 000 registered students
X 2 500 degrees awarded each year

X 200 PhD degrees awarded each year

X 3 500 staff (faculty: approx.: 900)

X Budget NOK 2.8 billion (EUR 340 million)

FACTS

NTNU facts
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Background

X Software-based systems replace older technologies 
also in safety and mission-critical applications
• Aircraft engine control and steering
• Railway signals and train control
• Medical devices
• Steering and piloting of automobiles
• Control systems on ships

X Earlier: Manual backup could take over.
X Increased requirements to speed and volume erodes

this fall-back capability
X Control systems in ships are becoming more and more 

complex
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ICT is essential in modern maritime systems

ERCIM WS on Dependable Software Intensive Embedded Systems       Porto 01.09.2005 Slide  6

Onboard ICT – some time ago
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Onboard ICT – these days
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� Software cannot be avoided, even during manual operation

� The cost, complexity, and reach of software has escalated widely, and will 
continue to do so.

� Has industry refocused according to changed risk picture?

ERCIM WS on Dependable Software Intensive Embedded Systems       Porto 01.09.2005 Slide  9

Examples of Incidents & losses
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Trends for the primary causes of incidents in the 12 year period
1990-2001

X The numbers are in percentage out of total reported incidents (Loss of position 1 & 2,
and Lost time incidents) the respective years.
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Ship accidents

X Several recent ship accidents, catastrophes
and near-accidents are most probably due to 
software failures or failures in interfaces
between software and hardware
• Tricolor collision in the British channel –

economical loss > 1 bill. USD
• Color line passenger ferry got on ground in Oslo

fjord – ship had to be repaired (loss of income
over several months)

• Several DP (Dynamic positioning) vessels in
North Sea loss of position (near accidents)
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Challenges

X Economic reasons and pressure from the market to reduce 
development times lead to a steadily increasing use of COTS
or older proprietary software of uncertain pedigree (SOUP)

X Control and safety systems onboard ships have become more 
dependent of computers and software

X Industry request approval of essential applications based on 
non-safety COTS software and hardware

X PCs with standard software (e.g. Microsoft software) is
currently used in several of critical ship applications such as 
steering and propulsion control

X DNV as a classification society must have a clear position 
regarding how COTS should be used and assessed on ships
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What is COTS?

1. “Commercially available application sold by vendors through 
public catalogue listings. COTS is not intended to be 
customized or enhanced” (DO-178B)

2. “Software, the pedigree of which is unknown or uncertain, 
which could in any way affect the correct operation of a 
safety-related system” (HSE / UK)

X Typical examples of COTS:
• Operating systems
• Database systems
• SCADA (supervisory control and data acquisition)

• Network and communication software
• A hardware component (e.g. a PC) can also be a COTS
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Requirements to safety-related systems

International safety standards
• IEC 6108
• DO-178B
• EN50126-29
• UK Min. of Defence 00-55,

00-56
• etc.

X Safety Integrity Level (SIL 
1-4)

X Requirements to design and 
development for each SIL 
level

X Independent assessment

DNV classification rules:
• Essential functions
• Important function

X No specific requirements to
software

X Requires that an independent
system can take over in case of 
failure in an essential system (e.g.
manual operation)

X No single failure in a control
system should lead to loss of an
essential function and an accident

X Requirements to functional
testing of all functions
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Comparison of safety standards
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Control system onboard ship

•Dynamic Positioning
•Navigation
•Power management
•Truster and Propulsion control

•Alarm Management
•Cargo & Ballast control
•Stabilizers
•Deck machinery

source: Kongsberg

•Future?
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Example of passenger ship subsystems
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Problems with COTS

X Important quality factors such as reliability and 
robustness is unknown

X Configuration status is unknown
X May fail in many different ways

• Deliver wrong output
• Function not carried out fast enough
• Does not deliver output (COTS “hanging”)
• COTS “writes” into some other application’s data or code 

area causing this component to fail
• No safe state defined
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Some ways to get around the problem

X If the COTS is an operating system (OS)
• Some real-time OSs are certified (VxWorks, OSE) – but expensive

and not necessarily certified to current configuration
• A study by HSE in UK they states that “vanilla” Linux in safety 

related applications at SIL 1 and SIL 2
X “Proven-in-use” arguments. Probably only feasible for  SIL 1

• Reliability / Robustness may depend on environment
• Version control?

X Exhaustive testing of COTS based on operational profiles
• Operational profile identifies the criticality of the component and their 

duration and frequency of use
X “Wrapping” of the COTS
X Use diverse COTS (such as in the Safe-PC project – two 

different operating systems)
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Assessment of COTS proposed to HSE / UK

X Adelard proposes five different types of assessment of 
COTS
• Process assessment
• Assessment of previous use
• Black-box assessment
• White-box assessment
• Third party assessment

X Adelard proposes to base the assessment on a safety
case approach and includes risk analysis e.g. HazOp
and/or FMEA
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Current computer and software relevant DNV rules

X Non-rotating bulk data store
X Required response times
X Detection of execution failures of individual modules are 

required
X Discrimination of faulty modes to ensure maintained operation 

at least of modules with same or higher priority
X Software development process requirements (ISO 9001)
X Redundancy
X Separate hardwired emergency systems
X Monitoring of functions, watchdogs
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Example of evaluation of COTS software and hardware
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Another example
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Still another example
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Main recommendations - requirements

X Normal operational states for normal operation
X Possible critical failures in normal operation and possible safe

states
X How to detect critical failures?
X What should be activated when a critical situation is detected
X What is the maximum response time for bringing the system to 

safe state?
X What is the reliability for brining the system to safe state?
X What is the possible consequence of not bringing the ship / 

system to safe state?
X COTS should be considered as black boxes
X Non-safety COTS may be embedded in a separate external 

safety layer
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Response time to transfer to safe state
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Criticality assignment to COTS is done top down
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COTS wrapped in safety layer

No standard requirement can be given to an non-safety specified 
COTS which will ensure that the component itself will satisfy the 
given requirements to the safety function
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Finally - a paradox
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Component-based
context dependent

hybrid property prediction

Anders Möller1,3, Ian Peake2, Mikael Nolin1,3,
Johan Fredriksson1, Heinz Schmidt2

– Mälardalan Uni, MRTC, Västerås, Sweden (1)

– Monash University, DSSE, Melbourne, Australia (2)
– CC Systems, Vasteras, Sweden (3)

Overview / motivation
component-based software engineering for 
embedded systems: reusability, maintainability

variability: product line architectures; function vs
properties

existing component-based techniques do not 
guarantee efficient resource usage

proposal: modify existing methods to be
context-dependent

use Dependent Finite State Machines (DFSMs)

focus on WCET for this presentation (WCET is 
prerequisite for scheduling)

Hybrid WCET prediction
Prediction alone 
inaccurate, pessimistic, 
expensive

Measurement alone rarely 
finds true WCET bound 
(not dependable)
– too many paths to try

– low-level effects (e.g. cache)

Combine prediction and 
measurement to eliminate 
weaknesses

DistanceController(
int speed, bool speedE,
int distance, bool distanceE
)

{
// check both rel.speed and distance
if (distE && speedE) {
// accelerations
difference (..) // or differential (..)
// time-to-impact
add (..) // or integral (..)

}

// speed only
if (speedE && !distE) {
..

}

// distance only
if (distE && !speedE) {
..

}
}

whole-of-system
approach
– test results overly 

pessimistic for 
some contexts /
results not easily 
reused

– requires full source

need for “context-
dependent”
approach

Hybrid WCET prediction: problem

?

?

?

?

DFSMs and protocol types
DFSMs (from “RADL”) model all
a component's externally visible 
characteristics

prototocol types model individual 
component interfaces (ports), 
enabling e.g. behavioural 
contracts

protocol types defined as regular 
languages (with straightforward 
extension to concurrency/trace 
languages)

speed
(3 bits only)

dist
(3 bits only)

speedE

distE

protocol restrictions 
model reduced use of
interface in a component 
deployment context---
fewer behaviours

protocol (type) restriction 
is regular language 
restriction (subset of
accepted strings)

narrower contexts 
reduce WCET

Protocol restriction
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Context-dependent property analysis
context of component type T == restriction of T's 
protocols

e.g.: the universal context of T is simply its DFSM's 
original gate protocols (trival restriction)

qualify (“guard”) property V of some T with a 
context C: <V,C>

<V,C1> only valid in a given context C2 if C2 
equals or (further) restricts C1

analysis techniques adapted to handle context

properties reusable only if guards satisfied

Distance(speed,speedE,dist,distE)

Distance(speed,speedE=0,dist,distE=0)

Distance(speed=3,speedE=0,dist=2,distE=0)

WCET<4ms

WCET<0.5ms
(“CC mode”)

(match “CC mode”)
WCET<0.5ms

Context-dependent hybrid prediction
per component

determine candidate worst-case paths and 
preconditions (using DFSA ops), per “mode”

test only “worst-case” paths

where context is obscured by difficult-to-analyse 
patterns, “degrade gracefully” to context-
independent worst-case scenario

“worst case” test cases may be reusable on 
similar architectures

Context-dependent hybrid prediction

protocol types function as contracts: global 
analyses may be adapted, by enforcing 
consistency of needed assumptions

e.g.: if variable range analysis determines (and
depends on) param V2{1,2,3,5}, this is included 
in the context

both static and dynamic aspects of contexts 
may be modelled using DFSMs

Related work (e.g.)
“Measurement-based Worst-Case Execution Time analysis
using Automatic Test Data Generation”

– Kirner, Puschner, Wenzel”, in Proc WCET04, 2004

– Hybrid WCET:
measurement of WCET of program segments + static WCET
model checker constructs test cases
reduce path explosion by condensing low level code
reduce state space to improve model checking performance

– Full prototype, feasibility case study

– Monolithic / whole-of-system approach:
for accuracy, each new component/system of interest must be 
analysed as a single unit

Evaluation
(Context-dependent prediction)

“Extra-functional Consistency and Prediction of 
Component-Based Control Systems” (eCAP) 
project

research collaboration Monash-ABB (German 
research centre, Ladenburg)

prototype of context-dependent WCET
– prediction of IEC 6 1131-3 code WCET on ABB

Advant Controllers

– context-dependent prediction architecture in place
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Evaluation (Context-dep. prediction)
requires adaptation of existing techniques, e.g. 
range analysis
– does not address pessimistic WCET bounds due to 

cache/pipelining/branch prediction

risk of complexity overwhelming analysis cost:
– finding “worst-case paths” (plural), i.e., modes might 

be expensive
– risk of context explosion? (too many choices or

combinations of context per component type)
– need to model concurrency semantics of inter-

component communication

Evaluation (hybrid context-
dependent WCET)

Not yet:
– simple measurement tool based on random inputs 

was prototyped by ABB; may be extended

Conclusions / future work

Initial evaluation promising

Potential to increase accuracy and efficiency of 
properties

Applicable to other behaviourally-derivable, 
compositional properties (space, reliability, with 
probabilistic extensions);

Hybrid scheduling: c.f. hybrid resource
reclamation methods using WCET probability 
distributions (MRTC)

Discussion..
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