
Interoperability via Mapping Objects

Fragkiskos Pentaris and Yannis Ioannidis
University of Athens, Dept. of Informatics and Telecommunications

Panepistemioupolis, 157 84, Athens, Hellas (Greece)
{frank, yannis}@di.uoa.gr

1. Introduction
In order to provide end-users with services of better quality, Digital Libraries (DLs)

need to be constantly adopting new technologies that are emerging in various related
fields, e.g., new metadata models and languages, new information retrieval algorithms,
and new storage means. These force DLs to constantly alter their basic structure, generat-
ing significant interoperability problems between the new and the old systems. Solving the
various semantic, syntactic and structural interoperability issues in large federations of
DLs, remains a major problem [8].

Over the years, system designers have developed several different approaches for in-
teroperability [12], including the use of (families of) standards, external mediation, speci-
fication-based interaction, and mobile functionality. The use of mediation or middleware
techniques has gained much support, as it provides good results without compromising the
autonomy of existing systems. Recent examples of such DL systems and architectures in-
clude MARIAN [3], MIX [1], and the Alexandria Digital Library [4]. Some other relevant,
yet more general, systems include Pegasus, Infomaster, TSIMMIS, GARLIC, HERMES,
MOCHA, MOMIS, OPM, SIMS/ARIADNE, Information Manifold, Clio, IRO-DB, and
MIRO-Web.

In this short paper, we give an overview of the HORSE II distributed mediated sys-
tem. This system, follows the traditional mediator-wrapper model, combined with several
techniques to provide bi-directional (read-write) access to multiple, disparate data sources.
Transformations between different forms of data and queries are expressed with the help
of volatile mapping objects. Mapping objects offer most of the functionality of other de-
clarative approaches to transformation, e.g., through mapping languages or, more recently,
meta-mapping languages, and in addition allow for easy querying, sharing, reusing, and
updating of transformation information.

In the next section, we give an overview of the HORSE II architecture. Subse-
quently, we present the way mapping objects are created, stored, and used by the system.
After comparing mapping objects with other relevant approaches, we conclude with the
status of the implementation.

HORSE II KERNEL

HTML module XML module Z39.50 module Biinary API module Telnet module

Z39.50 module XML module ODBC module Memory module Structured Text moduleRemote Horse module

Interface Layer

Middle Layer
(Internal/Global Schema)

Storage/Wrappers Layer
(External/Local Schemas)

Figure 1. The HORSE II modular Architecture

 - 2 -

2. The Horse II Architecture
HORSE II follows a multi-layered, component-based architecture (Figure 1). The

top layer contains interface modules that provide the means to end-users and third-party
applications to interact with the system. It performs two tasks: (a) It accepts and parses
user queries to convert them into an internal binary-tree format and (b) it converts the an-
swers of these queries back to the “native” format of each external interface.

Interface modules use a well-defined API to forward user queries to the kernel of
HORSE II. These queries are expressed using the MOOSE object-based data model and
the FOX query language [6]. HORSE II allows queries to reference multiple parts of the
database schema that transparently reside in different external storage systems. For exam-
ple, a single query can refer to data stored in an XML file, a text-formatted file, and a rela-
tional database. The HORSE II kernel is responsible for splitting user queries into sub-
queries for execution by the relevant storage modules (bottom layer) performing optimisa-
tion to the extent that its knowledge about the storage systems allow. In addition, the ker-
nel provides basic join, merge, sort, and filter capabilities for building the final answer of
a query from the partial answers of its subqueries.

The bottom layer of HORSE II contains the storage/wrapper modules. These enable
HORSE to access data residing in external, heterogeneous, autonomous data sources, e.g.,
XML files, relational databases, data under remote instances of HORSE II, or even data
produced by arbitrary software applications. Each module is responsible for converting
(parts of) user queries and updates (whenever these are allowed [11]) from the FOX query
language used internally by the kernel into the native external query language.

A critical question of mediator-based systems is how external data are mapped to the
internal schema. Earlier systems implement mappings in the wrapper code. This typically
has the best performance but also the least flexibility, as excessive source-code modifica-
tions may be required every time a mapping is changed. Even when mappings are ex-
pressed as declarative rule code, this may hamper the system’s expandability.

HORSE II follows a new declarative approach, which is based on the use of map-
ping objects. These are described in the next section.

3. Mapping Objects
In principle, external schemas are independent from the internal schema and vice

versa. Furthermore, for each one there are multiple mappings onto schemas on the other
side that are meaningful, and often several of them may need to be active simultaneously.
That is, mappings are independent from the schemas as well, in the sense that they are not
absolutely determined by them. Given such autonomy, we propose to express and store
the information required for data conversion as mapping objects of a “mapping schema”,
in exactly the same fashion that the internal and external schemas are stored as objects in
the appropriate “meta schemas”.

More specifically, communication of HORSE II with any external system assumes
the existence of three system-level schemas: First, there is the meta-schema of HORSE II,
which is managed directly by the kernel and is unique. It will store the classes and rela-
tionships of the internal (MOOSE) schema. Second, there is the meta-schema for schemas
specific to the external system. It will store the components of the external schema as ex-
pressed in the data model of the corresponding system. For example, to manage external
data stored in XML files, this meta-schema should be able to capture the components of a
DTD file. Third, there is the schema for capturing (possibly bi-directional) mappings be-
tween schemas of the internal and external types. This is also specific to the nature of the
external system, as it must refer to parts of the second meta-schema above (as well as the
first one), although some higher-level parts of it are generic.

 - 3 -

Figure 2 shows an example of
(parts of) the three system-level schemas
for XML external data. At the top is
(part of) the MOOSE meta-schema, con-
sisting of classes CLASS and RELA-
TIONSHIP, which can store information
on any internal HORSE II schema. At
the bottom is the XML meta-schema,
consisting of classes XML ELEMENT,
XML CONTENT PART, PSEUDO
XML ELEMENT, and XML ATTRIB-
UTE. These classes represent our way
of capturing the schema of an XML file
(i.e., a DTD file). Finally, in the middle
is the schema for XML mapping objects linking internal (MOOSE) schemas and external
(XML file) schemas.

As an example of how HORSE II currently uses these schemas, Figure 3 shows
some of the statements executed when a very simple mapping from an XML file with
books and authors to an appropriate MOOSE schema is declared. The load module
statement is given once to dynamically load and activate the XML storage module. The
schema and mapping declaration statements are between a Begin schema and an End
schema statement. The Register tuple class Book statement adds to the internal
schema a new class Book with an attribute Author (updating the CLASS and RELA-
TIONSHIP classes of Figure 2). The first two Insert statements record the features of
the external XML file by constructing two instances of the XMLElement and XMLAttrib-
ute classes. The last Insert statement defines the mapping between the internal and the
external schema. Finally, the Handle class Book statement binds this mapping with
the internal class Book and the external XML file.

Mapping objects can be used to express both unidirectional (in either direction) and
bi-directional transformations of high complexity between the internal and the external
schema. Thus, they can be used in conjunction with both the global-as-view and the local-
as-view approaches [7], where the internal schema is a function over the external schemas
or the opposite, respectively. Such flexibility is both important, as each approach is better

Class Relationship

Class Mapping Relationship Mapping

XML Class Mapping XML Relationship Mapping

XML Content
Mapping

XML Attribute
Mapping

XML Element XML Content Part

Pseudo XMLElement XML Attribute

N:1 N:1

1:1

1:1

1:1

1:1

1:N

1:N

MOOSE
Meta-Schema

XML
Meta-Schema

< represents
contains >

XML
mapping object
Schema

Figure 2. The schema of an XML mapping object.

> Load module “xmlstorage.so”; // Dynamically load XML storage module.
> Begin schema;

> Register tuple class Book // Alter Internal schema definition
 with haspart Author to string,
 .
 .
> Insert into XMLElement instance(...); // Alter XML schema definition
> Insert into XMLAttribute instance(...);
 .
 .
> Insert into XML_ClassDefinition // Create a mapping object. Note that this
 instance (...) as MapObject; // is similar to creating a normal MOOSE object.

> Handle class Book
 using xmlstorage at “http://hephaestus.di.uoa.gr/dl/metadata.xml”
 mapped as MapObject; // Bind internal class MetadataObject with the
 // external XML file using the
 // XML mapping object MapObject.
> End schema;

Figure 3. Creating a mapping between an internal and an external schema

 - 4 -

than the other on queries or updates, and also necessary, as both forms of usage will be
demanded of future DLs for specific data. For example, assume that the internal schema
contains two classes named Book and NewBook (the latter feeding the former), which are
mapped onto an XML file and a relational table respectively. Figure 4 shows how easy it
is to perform the data transfer (with a single insert-select statement) having defined appro-
priate mapping objects in the two directions.

Mapping objects have several advantages compared to earlier approaches:
• Schemas and mappings are defined independently. Thus, in HORSE II, it is possible

to map the same external schema onto two or more internal ones and vice versa.
• Mapping objects can be shared easily in distributed systems, just like all other objects.
• Mapping objects can be queried and updated through the regular query language. Such

an update essentially alters the mapping between the internal and the external schema.
• Mapping objects (or their parts) can be shared and reused. This is useful for dealing

with large schemas containing many repetitions and for incorporating parts of standard
schemas (e.g., ontologies) into larger more specific ones.

• Mapping objects facilitate system expandability. To communicate with a brand new
external system, only a new meta-schema and corresponding mapping schema need to
be defined for data transformation.

4. Comparison with Existing Approaches
Most mediation systems overcome the problem of hard-wiring the mappings into the

wrappers by using some specific mapping language, e.g., there is the BRIITY (bridging
heterogeneity) mapping language [5], MARIAN uses 5S, a digital library description lan-
guage [3], while TSIMMIS has MSL (Mediation Specification Language) [9]. The use of
a mapping language shares some of the characteristics of our approach but not the advan-
tages mentioned above. With respect to expandability, for example, interacting with a
brand new system would require modification of the mapping language itself, as it can
only express mappings to systems that are known at the time it was designed. Proposals
have also been made to use logic and other Datalog-like notation as a mapping language
(and for expressing other useful inter-schema information) [2, 13]. This offers superior
expressive power but does not address all the points made above. Likewise, a recent pro-
posal to use a meta-language for defining mapping languages seems to overcome some of
the limitations of mapping languages [10], but it appears to be still inferior to mapping ob-
jects with respect to some aspects, e.g., reusability and sharing.

Note that a mapping-language approach can be easily combined with our approach,
by putting code excerpts as part of an object. This may be necessary in particular when
the expressive power of mapping objects fails to capture a particular complicated case.

/* Select some Book objects and copy (insert)
 them into class NewBooks. */
> insert into NewBooks
 (for e in Books
 select e where Author=”Socrates”);

// Commit changes
> Commit;

HORSE II kernel

XML module
(Storage module)

ODBC module
(Storage module)

<XML>
<MetadataObject
Author=Ioannidis
Title=GMAP
</MetadataObject>
</XML>

XML

RDBMS

Class Book Class NewBook

Figure 4. Moving objects from an XML file into a Relational

 - 5 -

5. Status of HORSE II
HORSE II is being implemented in C++ and is currently about 70K lines of code.

The query processor is still incomplete, but mapping objects are already supported and can
be used for updates to disparate external data sources. The current implementation fo-
cuses on global-as-view mapping objects but this will be generalized in the future support-
ing both kinds in a uniform way. With respect to mapping-object specification, which
may still be nontrivial for complex schemas, the system currently offers tools to automati-
cally generate MOOSE schemas from relational schemas and XML DTD files, respec-
tively, using all semantic information available in them, e.g., referential constraints.
These mappings can be modified by the user to fit to particular needs.

 As a final, somewhat related note, with respect to transaction management, HORSE
II makes a modest effort to support simultaneous querying or updating of multiple dispa-
rate data sources within the boundaries of a single global transaction. The system attempts
to use two-phase commit and two-phase locking if the capabilities of the sources permit
this. Otherwise, e.g., if a relational database and an XML file is referenced in the same
transaction, the system falls back to weaker protocols (possibly even that of employing no
concurrency control mechanism). In general, the current implementation does not try to
maintain the properties of a proper global transaction, since this is not universally possible
when dealing with arbitrary, truly autonomous data sources.

6. References
[1] Chaitanya Baru, Vincent Chu, Amarnath Gupta, B. Ludäscher, Richard Marciano, Yannis Papakon-

stantinou, and Pavel Velikhov, XML-Based Information Mediation for Digital Libraries, Proc. Of
ACM Conf. on Digital Libraries, Berkley, August, 1999.

[2] Tiziana Catarci, and Maurizio Lenzerini, Interschema Knowledge in Cooperative Information Sys-
tems, CoopIS 1993, pp 55-62.

[3] Marcos André Conçalves, Robert K. France, Edward A. Fox, and Tamas E. Doszkocs, MARIAN
Searching and Querying across Heterogeneous Federated Digital Libraries, 1st DELOS Network of
Excellence Workshop on “Information Seeking, Searching and Querying in DL”, 2000.

[4] J. Frew, M. Freeston, N. Freitas, L. Hill, G. Janée, K. Lovette, R. Nideffer, T. Smith, and Q. Zheng,
The Alexandria Digital Library architecture, Int. Journal on Digital Libraries, 2:259-268, 2000.

[5] T. Härder, G. Sauter, and J. Thomas, The intrinsic problems of structural heterogeneity and an ap-
proach to their solution, The VLDB Journal, 8:25-43, 1999.

[6] Y. E. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti, ZOO : A Desktop Experiment Management
Environment, Proceedings of 22nd Int. Conference on VLDB, 274-285, 1996.

[7] Alon Y. Levy, and Daniel S. Weld, “Intelligent Internet Systems: An introduction to the special Is-
sue”, Artificial Intelligtence, 2000.

[8] D. M. Levy, and C. C. Marshal, Going Digital: A Look at Assumptions Underlying Digital Libraries,
Communications of the ACM, 38(4):77-84, April 1995.

[9] Chen Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. Ullman and M. Vali-
veti, Capability Based Mediation in TSIMMIS, ACM Int. Conference on Management of Data, 1998.

[10] Sergey Melnik, Héctor Garcia-Molina, and Andreas Paepcke, A Mediation Infrastructure for Digital
Library Services, Proc. of ACM Digital Libraries Conference, ACM Press, June 2000.

[11] R. J. Miller, Yannis E. Ioannidis, and R. Ramakrishnan, The Use of Information Capacity in Schema
Integration and Translation, Proceedings of the 19th VLDB Conference, Dublin, Ireland, 1993.

[12] A. Paepcke, C-C K. Chang, H. Garcia-Molina, and T. Winograd, Interoperability for Digital Libraries
Worldwide, Communications of ACM, 41(4):33-43, 1998.

[13] Jeffrey D. Ullman, Information Integration Using Logical Views, 6th Int. Conference on Database
Theory (ICDT), 1997.

