
Result Ranking for Structured Queries against

XML Documents

Torsten Schlieder�

Freie Universit�at Berlin

schlied@inf.fu-berlin.de

Holger Meuss

Ludwig-Maximilians-Universit�at M�unchen

meuss@cis.uni-muenchen.de

Abstract

XML allows to represent both content and structure of documents. Querying XML data therefore

requires a combination of a formal query language with the concept of relevance used in Informa-

tion Retrieval. In this paper we present such a combination: First, we review Tree Matching as a

simple and elegant means to formulate queries without knowing the exact structure of the data.

Second, we propose a dynamic document concept by deciding on the document boundaries at

query time. Third, we marry structured queries with term-based ranking by extending the term

concept to structural terms which include substructures of queries and documents. We show how

the notions of term frequency and inverse document frequency can be adopted to dynamically

de�ned documents and structural terms. We introduce an eÆcient technique to calculate both

term frequencies and inverse document frequencies at query time. By adjusting parameters of the

retrieval process we are able to model two contrary approaches: the classical Vector Space Model,

and the original Tree Matching approach.

1 Introduction

XML gains growing importance in the �eld of Digital Libraries, bridging the gap between the Informa-

tion Retrieval (IR) community and the �eld of database research. It o�ers a uniform and standardized

way to represent and exchange both documents in the sense of IR and data stored in databases. So far,

both communities faced the new challenges in their own ways: Database research migrated query lan-

guages for semistructured data to XML [ABS00]. But none of the query languages for semistructured

data is appropriate for information discovery in digital libraries, since

� the user must know the data structure in order to formulate queries, and

� no query language supports result ranking according to the user's information need.

Traditional IR techniques, on the other hand, are based on
at text models [BYRN99]. They cannot

be used for XML without serious restrictions, since

� the document structure is ignored which dramatically lowers the query precision, and

� the document concept is static and typically bound to physical documents.

To understand the problems arising from prede�ned document boundaries please consider XML docu-

ments describing books. Some documents may contain information about a single book. Others may

collect data about a whole library consisting of thousands of books. Obviously, it is no good idea to

retrieve a whole library when the user is only interested in a book. Sometimes the user may only be

interested in a chapter or section. This problem can only be solved with a dynamic document concept

{ but a dynamic document concept does not allow a precalculation of basic values needed for ranking

like term frequencies and the inverse document frequencies.

�This research was supported by the German Research Society, Berlin-Brandenburg Graduate School in Distributed

Information Systems (DFG grant no. GRK 316).

author

name

Bradley

XML

title

title

XML

author

Bradley

chapter

section

title

XML

chapter

library
book

XML

title

author

Bradley

chapter

book

(a) Query tree (b) Part of a XML tree

Figure 1: Unordered inclusion of a query tree in an XML tree.

In this paper we tackle each of the above problems. In Section 2 we review Tree Matching as a

simple and elegant technique to query XML documents. Tree Matching allows to formulate structured

queries with only partial knowledge of the document structure. In Section 3 we introduce a solution to

the document-boundary problem by deciding on the document type at query time. Section 4 proposes

an approach to combine structured queries with term-based ranking. We extend the term concept

to structural terms which include substructures of queries and documents. This makes it possible to

assign positive relevance values to XML documents that only partially match the query. In Section 5 we

show how the ranking mechanism of the classical Vector Space Model can be extended to dynamically

de�ned documents and structural terms. In Section 6 we demonstrate that our approach can simulate

both the Vector Space Model and the Tree Matching formalism by adjusting weights of the query

vector. In Section 7 we introduce an eÆcient technique to compute all necessary term frequencies

and inverse document frequencies at query time. In Section 8 we present �rst experiences with the

implementation of our approach. Finally, we review related work in Section 9, and give a conclusion

in Section 10.

2 Tree Matching

Kilpel�ainen introduced in [Kil92] several variations of Tree Matching techniques as simple and intuitive

means to answer queries over trees. We decided to use a slightly modi�ed version [Meu00] of unordered

tree inclusion as the most
exible and powerful variant1. Figure 1 shows an unordered tree inclusion

of a query tree in an XML tree. A match is de�ned using a mapping from the query nodes to the

nodes of the XML tree that preserves label names and the ancestor-descendant relation. Note, that

the order of siblings is not important, and that some nodes may be skipped in order to include the

query tree in the XML tree (node name in the example). We call the image of the query root a match.

The subtree rooted at a match is returned as a result.

3 Logical Documents

We model a collection of physical XML documents as labeled trees connected by a single root with

a unique label. Currently, we ignore ID-references and hyperlinks. To simplify our model, we only

use a single node type for XML elements, attributes, and text data using normalization techniques

described, for example, in [SN00].

The de�nition of Tree Matching results leads to a dynamic document concept: Every subtree of

the XML tree is considered to be a logical document. We assign types to queries and documents: The

type of a query and a logical document, respectively, is determined by its root label. Thus, a book

query only selects book documents.

1Note that our formalism can also be combined with the nine other variants of Tree Matching.

4 Structural Terms

In IR, the common notion of terms is restricted to unstructured terms (in most cases simply words).

We extend the de�nition of terms to substructures of the query tree and the XML tree in order to

achieve three objectives: First, we need a notion to express that a query may have partial matches

only. In our model, a query has a partial match if at least one query substructure occurs in a logical

document. Second, we want to measure how good a query �ts to the data by considering how many

query substructures have matches in a logical document. Third, we want to re
ect the observation

that not only
at terms but also substructures have a distribution in and among logical documents.

Due to the lack of space we only give an informal de�nition: Every labeled tree (with a given

alphabet of labels) is called structural term. A structural term has an occurrence in a query if it is a

subtree of the query tree. The de�nition of an occurrence in a document slightly di�ers: A structural

term has an occurrence in a document if the term has a match in the XML subtree representing the

document.

Example 4.1 Six structural terms occur in the query in Figure 1: The two \atomic" subtrees con-

sisting only of the nodes labeled XML and Bradley, respectively. Next, the three subtrees rooted at

the inner nodes with labels title, chapter, and author, respectively. Finally, the query tree itself is a

structural term. The XML document in Figure 1 has many more structural term occurrences, e.g. the

four structural terms book[author], Bradley, author[name[Bradley]], book[Bradley,title[XML]].

Structural terms behave like ordinary terms: They have a number of occurrences in a logical

document and a distribution across all logical documents of a given type. Therefore, we can adopt

the standard de�nitions of term frequency (tf) and inverse document frequency (idf) for structural

terms: The tf of a term tk is the number of its occurrences in the logical document di normalized by

the frequency of the most frequent term in document di. The idf of tk re
ects the ratio between the

number of all logical documents and the number of documents containing term tk.

5 Result Ranking

The Vector Space Model (VSM) [SM83] is one of the most popular models used in IR. It is based on

the comparison of the query term vector with the document term vectors. Each term has a certain

weight which re
ects its descriptiveness with respect to the query or document.

We extend this model to term vectors consisting of structural terms. That is, each component of

the query and document vectors contains the weight of a structural term. Since we use the standard

de�nitions of tf and idf (adopted to our dynamic document concept), we are able to employ the

formula wik = tfik � idfk to determine the term weight of term tk in document di.

The same analogy holds for the comparison function between a query vector and a document vector,

assigning the document a relevance value with respect to the query. We are free to use any function

developed for the VSM, e.g., the Cosine, Dice or Jaccard function. We use the scores computed by

one of these functions to generate the ranked result list.

However, there is a di�erence to the classical VSM. Our terms are structurally dependent, i.e.,

some terms are subtrees of others both in the query and the documents. These dependencies are, in

contrast to the dependencies of the VSM, necessary for our model: Assigning weights to structural

terms that contain each other allows us to improve the precision without lowering the recall. Please

see Figure 1. Every document that contains the query term author[Bradley] does also contain the term

Bradley. But documents that contain the \larger" term author[Bradley] are preferred since their score

is a function of the weights of both terms. Consequently, logical documents that match to the whole

query get an extra reward re
ected by the weight assigned to the structural term representing the

query.

6 Simulating Classical Models

Our approach generalizes the classical VSM for
at text and the original Tree Matching approach.

We simulate the classical VSM by masking all \complex" structural terms, i.e, we assign 0-values

to all positions of the query vector that do not correspond to the leaf nodes of the query. There-

fore, only \
at" terms of the documents are incorporated in the computation of the similarity score.

Consequently, the scores computed by the classical VSM and by our model are exactly the same.

We simulate the Tree Matching approach in a similar way: Only the structural term representing

the whole query gets the weight 1; all other components of the query vector are set to 0. With this

technique, only full matches of the query achieve a score greater than 0. Non-matching documents as

well as documents with partial matches all get the score 0.

7 Implementation

The typical implementation of the VSM consists of a lexically sorted list of all terms occurring in

the document collection. Each term is annotated with the idf and a list of occurrences and term

frequencies. We cannot use this simple technique for two reasons: First, the set of structural terms

that have matches in the data tree is exponentially larger than the set of document terms in the
at

text model. Second, the scope of the term frequencies are logical documents which are de�ned at

query time. The number of potential logical documents is equal to the number of inner nodes of the

data tree. If we computed all term frequencies at indexing time, the posting of a term would consist of

references to all data subtrees containing the term. Notice also, that a query selects only documents

of a certain type. Hence, each term must refer to a list of idfs { one idf for each document type. We

therefore compute the tf and idf values while executing the query. Fortunately, we can restrict our

computations to structural terms occurring in the query, and to the document type determined by

the label of the query root.

Our notion of tree embedding requires that every parent-child pair of a query term must be

mapped to two data nodes for which the ancestor-descendant relationship holds. To construct all

ancestor-descendant pairs for a given pair of labels we adopt an indexing technique called partial

index introduced in [Nav95]. The partial index consists of an inverted list of all index terms, and a

structural index. Each entry of the inverted list indicates all text positions in which the term occurs.

The structural index consists of all node types (i.e., di�erent node labels). Each type refers to all its

occurrences using two sorted lists: The �rst one stores the start positions of text segments covered by

the node. The second list indicates the �nal positions of the segments.

Our approach di�ers from [Nav95] since we (1) model a document collection as a single tree, (2)

allow recursive labeling, and (3) allow not only text but also attribute values and empty elements

to be leaf nodes of the XML tree. However, the most important extension is the computation of all

required term frequencies and inverse document frequencies at query time. We count the number of

occurrences of a structural term in a logical document, and the number of logical documents containing

the structural term. We add a third list to each node type of the structural index. Each list entry

stores the frequency of the most frequent index term occurring in the tree rooted at the corresponding

data node. We use these values to normalize the computed term frequencies without additional time

complexity.

In the case of non-recursive trees the time complexity of our algorithm for the ancestor-descendant

problem is bound by O(s). The parameter s denotes the selectivity, i.e., the maximal number of

nodes having the same label. If the tree contains recursive labels, parts of the inner relation may

be processed several times. Since the number of nodes carrying the same label along a path cannot

exceed the depth d of the tree, the complexity is bound by O(s � d). To compute the tf and idf for all

documents of a certain type we need at most 2q� 3 path joins, where q is the number of query nodes.

Hence, the overall complexity of our algorithm is O(q � s � d).

8 Practical Experiences

In this section we present �rst experiences with the implementation of our model. Since there is

currently no large test collection of XML �les, we decided to use a small set of legal documents provided

by the juris GmbH, Saarbr�ucken. This collection consists of 22 documents containing laws, regulations,

and directives of the German federal state Hessen. We assumed several sample information needs,

formulated di�erent queries for each, varied the query weights, and studied the rankings generated

Rank

3 9 106 17 1 20 2 13 18 19 21 11 15 7 16 4 5 8 14

1

5

10

15

20

22

document[preamble[law] and paragraph[minister and enact and regulation]]
document[preamble[law] and minister and enact and regulation]document:0[law and minister and enact and regulation]

Figure 2: Ranking the example collection with di�erent queries

by the system. We learned that structured queries do not necessarily lead to a better ranking if the

keywords are semantically related, i.e., tend to occur together in a data subtree. However, we observed

a strong improvement (1) if the query speci�es that certain terms should be in the metadata of the

logical documents (e.g., title, preamble), or (2) if the query terms are not closely semantically related.

We illustrate the improvement of the retrieval precision using the sample information need "Get

all laws that describe how ministers enact regulations." Our �rst query (depicted in Figure 2 with

light grey bars) is unstructured, containing only the keywords law, minister, enact, and regulation.

We applied the weight 0 to the whole query in order to simulate the
at Vector Space Model (see

Section 6). The second query (dark grey) additionally requires that law appears in the preamble of

the document. The query also prefers full matches over partial matches by using the implicit weight

1 for the structural term representing the full query. The third query (black) extends the second one

and expects the keywords minister, enact, and regulation to occur in the same paragraph.

Figure 2 shows the the rankings generated by the three queries. The x-axis indicates the logical

document numbers; the y-axis shows the relative position of the document in the ranking. We sorted

the documents according to the ranking generated for the �rst query.

The �gure points out that adding structure to a query does not lower the recall but strongly

improves the query precision. The shift from the
at query to the second one prefers documents that

are in fact laws { which is speci�ed in the document preamble. That is, the documents 9,18,19,15,7,4

now take the �rst positions in the ranking. Note, that we are also able to weaken this e�ect by

applying a smaller weight to the query node preamble. With this kind of query extensions we are able

to involve metadata in the text retrieval process { but our query does not fail if the metadata does

not contain the speci�ed terms.

By constraining the remaining keywords to appear in the same paragraph we again change the

ranking order. Now, documents of type law that contain all three keywords in a single paragraph

take the �rst positions in the ranking (documents 18,15,7). And indeed, the documents 18, 15, and

7 contain the information satisfying the original information need { while other documents may also

contain all keywords but not in the same context. In fact, the inner query node paragraph works

similar to the near operator used in some retrieval engines but does not rely on positional distances

but on semantic closeness speci�ed by the document creator.

Another important observation is the stability of the rankings. Documents that have many matches

of query subtrees are preferred with respect to the ranking generated by the
at query { but documents

that have only partial matches preserve their relative positions to each other. This can be seen in the

diagram in Figure 2 by sequences of documents (6; 17; 1; 9; 20; 2; 13) or (22; 5; 8; 14; 10), that mainly

keep their descending ranking order for all three queries.

9 Related Work

There have been few research results concerning the ranking of structured queries against XML docu-

ments. In [BYRN99], several approaches that combine content and structure are compared. However,

none of the models considers relevance ranking. XXL [TW00] and XIRQL [FG00] introduce formalisms

loosely based on XML-QL and XQL, respectively, that incorporate the notion of relevance. In both

cases the relevance of a document to a structured query is determined by combining the weights of the

terms in the query leaves according to the query structure. In contrast to our approach, neither XXL

nor XIRQL can treat partial structural matches, where only a part of the query structure matches a

document. In addition, the question of how the term weights in the documents can be adjusted to the

dynamic document notion is not discussed. The static assignment of weights to document terms at

indexing time used in XXL and XIRQL cannot re
ect the weight of a term in the varying notions of a

logical document determined at query time. The formalism approXQL, as proposed in [SN00], is based

on Tree Matching and follows an orthogonal approach to XXL, XIRQL, and our model: Embeddings

that skip few document nodes are preferred and result in a high relevancy value for the respective

document.

10 Conclusion

In this paper we proposed an approach to combine structured queries against XML documents with

result ranking. With our model we are able to improve the precision of the retrieval process without

lowering the recall. Moreover, our approach generalizes both the classical VSM and the Tree Matching

approach by simply adjusting weights of the query vector. We also presented an implementation

technique that allows us to eÆciently compute all necessary term frequencies and inverse document

frequencies at query time. First experiments with our prototype have shown that incorporating

structure into the VSM improves the retrieval precision especially for queries with keywords that

appear in di�erent contexts. We plan to do further experiments to study the behavior of the model

with di�erent collections and queries.

References

[ABS00] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to

Semistructured Data and XML. Morgan Kaufmann, San Francisco, 2000.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley

Longman, 1999.

[FG00] N. Fuhr and K. Gro�johann. XIRQL: An extension of XQL for information retrieval. In

ACM SIGIR Workshop On XML and Information Retrieval, Athens, Greece, July 2000.

[Kil92] P. Kilpel�ainen. Tree Matching Problems with Applications to Structured Text Databases.

PhD thesis, University of Helsinki, Finland, November 1992.

[Meu00] H. Meuss. Logical Tree Matching with Complete Answer Aggregates for Retrieving

Structured Documents. PhD thesis, Dept. of Computer Science, University of Munich,

2000.

[Nav95] G. Navarro. A language for queries on structure and contents of textual databases.

Master's thesis, Department of Computer Science, University of Chile, April 1995.

[SM83] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, Tokio, 1983.

[SN00] T. Schlieder and F. Naumann. Approximate tree embedding for querying XML data. In

ACM SIGIR Workshop On XML and Information Retrieval, Athens, Greece, July 2000.

[TW00] A. Theobald and G. Weikum. Adding relevance to XML. In WebDB'2000 (Informal

Proceedings), 2000.

