
55

Multiple Metaphor Environments:
Issues for effective interaction design

C. Stephanidis and D. Akoumianakis

Institute of Computer Science, Foundation for Research and Technology-Hellas
(FORTH)

Science and Technology Park of Crete
GR-71110, Heraklion, Crete, Greece

Tel.: +30-81-391741, Fax: +30 - 81 - 391740
emails: cs@ics.forth.gr, demosthe@ics.forth.gr

Abstract. This position paper presents the notion of multiple metaphor
environment and discusses principles and techniques for constructing
user interfaces as multiple metaphor environments. Though, multiple
metaphor environments represent a generic concept, they are particularly
relevant to novel application domains and technologies, such as Digital
Libraries.

1. Introduction: Metaphors and the user interface

The notion of a metaphor in interface design is increasingly becoming a critical aspect
in the attempt to provide more effective and higher quality interaction between
humans and artefacts. Though several efforts have been devoted to the study of
metaphors (e.g., Carroll et al., 1988; Henderson et al., 1986; Moll-Carrillo et al., 1995),
very little is known as to how they can be systematically embedded into computer-
based interactive software. At the same time, the number and diversity of application
domains, in which the use of metaphors is critical, continuously increases (examples
include, educational software, digital libraries, home-based interaction environments,
virtual and augmented realities, health care records, electronic commerce, etc). A closer
look into these application areas and the study of success of respective systems,
reveals that, whereas in the past the use of metaphors was at the discretion of the
designer, or in the best of the cases, bound to what the underlying development toolkit
offers (i.e., trashbins, form filling), today and for certain non-traditional / non-business
applications, embedding metaphors to interface design is compelling for the wide
adoption and user acceptance of the application.

The use of metaphor may be studied at various levels, ranging from the overall
interactive environment offered by an application, to the task level (i.e., how users
engage and perform specific goal-oriented activities), as well as the physical level of
interactions (i.e., icons used to convey intended meaning). Moreover, it is important
that each of those levels may not involve the articulation of the same real world
metaphor, but variants of different ones. Thus, at the level of the overall interactive
environment, users may be exposed to a books-like (Moll-Carrillo, et al., 1995) or
rooms-like (Henderson et al., 1986) metaphor, while in order to accomplish specific

56

tasks (such as for example, deletion of a file) alternative metaphors (i.e., deleting a file
from a folder) may be recruited.

This leads to the conclusion that progressively interactive computer-based
applications move towards a state which can be characterised as multiple metaphor
environments. The notion of a multiple metaphor environment was firstly introduced
and elaborated in the context of FRIEND21 (a major Japanese collaborative research
and development project). There, it was claimed that interactive systems capable of
mapping concepts from a source domain (i.e., database search operation) to different /
multiple target domain functions (e.g., newspaper or HTML-based search), and vice
versa, provide multiple metaphor environments. However, the main thrust of work in
FRIEND21 was mainly conceptual and, as a result, did not deliver any detailed insight
into how such systems may be specified, designed or implemented, other than
guidelines for the human interface of the next century (Institute for Personalised
Information Environment, 1995).

In this position paper, we revisit the notion of multiple metaphor environments from
a slightly different view angle. In particular, we are interested to investigate the
contributions of multiple metaphor environments to the design and development of
user interfaces for different user groups, including people with disabilities
(Stephanidis, 1997; Akoumianakis, et al., in press). Our objective is to draw upon
recent experience, in the context of collaborative research and development projects,
and shed light into the way in which (i) metaphors may become embedded into user
interfaces, (ii) multiple metaphor environments may be specified, realised and
implemented, and (iii) the above impact on the architectural abstractions of user
interface software. The presentation of the relevant issues will be complemented by
reference to example case studies in which multiple metaphor environments have been
designed and implemented. In particular, examples, involving the fusion of
conventional visual desktop interaction, augmented interaction elements (Savidis et al.,
1997), such as scanning, and alternatives interaction environments, such as non-visual
Rooms (Savidis et al., 1995), will be discussed with the view to reveal characteristic
properties of such interactive software, development tool requirements, and
prospective challenges (Stephanidis, 1997).

2. Multiple metaphor environments

In the context of the present work, metaphors are considered to have a two-fold
purpose in interface design. They can either be embedded in the user interface, or
characterise the overall interactive environment of an application. For example, the
menu interaction object class, as commonly encountered in popular user interface
development toolkits, follows the “restaurant” metaphor, and provides an example of
embedding metaphor into a user interface. This is because it is commonly found as
embedded element in systems conveying radically different interactive embodiments of
the computer; examples are the visual desktop as in Windows95TM, rooms as in
(Henderson et al., 1986), or book as in (Moll-Carrillo et al., 1995).

57

Alternatively, a metaphor may characterise the properties and the attitude of the
overall interaction environment. For instance, the visual embodiment of the desktop
metaphor in Windows95TM presents the user with an interaction environment based
on high level containers, such as sheets of paper called windows, folders, etc., which
characterise the overall interactive embodiment of the computer. Systems, such as
those in (Henderson et al., 1986) or (Moll-Carrillo et al., 1995), are examples of
alternative embodiments of real world metaphors into a user interface. It should be
noted that a particular real world metaphor may have different interactive
instantiations. Thus, for example, OSF/MotifTM and Windows95TM support
variations (mainly in the look and feel) of the visual embodiment of the desktop
metaphor. From the above, it follows that the interactive environment of a metaphor is
realised by specific user interface development toolkits.

Different interaction metaphors may be facilitated either through the enhancement, or
augmentation of existing development toolkits, or by developing new toolkits. For
instance, an enhancement of the interactive environment of a metaphor may be
facilitated by introducing new composite object classes, such as the note cards in
prevailing Windows-like systems, or by embedding in the toolkit additional interaction
techniques, such as automatic scanning facilities for interaction object classes (Savidis
et al., 1997). What is important to note about enhancement, or augmentation is that it
rarely alters the overall interactive environment of the metaphor. This is because, the
scope of the enhancement, or augmentation does not account for top-level container
object classes (such as a window in Windows95TM, the room in (Henderson et al.,
1986) or the book in (Moll-Carrillo et al., 1995). Instead, through sub-classing,
augmentation extends the range of simple or composite interaction elements that may
be supported in a toolkit’s object hierarchy.

In case that an alternative interaction metaphor needs to be supported, then it may be
realised through new toolkits. An example of the latter case is reported in (Savidis et
al., 1995; Savidis et al., in press) where Commonkit is used to support user
interaction based on a non-visual embodiment of the Rooms metaphor through speech
and / or Braille output and keyboard input. COMMONKIT offers the full range of
programming features encountered in currently available GUI toolkits, such as
hierarchical object composition, dynamic instantiation, call-back registration and
event-handling. In its current version, COMMONKIT implements only one container,
namely Room, and several object classes (e.g., floor, ceiling, front / back / left / right
wall), in addition to conventional objects, such as menu, toggle (represented as on / off
switch), button, text reviewer, etc. A more elaborate account of the object library of
COMMONKIT, as well as applications built with it, can be found in (Savidis et al., in
press).

58

Following the above, the notion of a multiple metaphor environment implies a
particular computer-based embodiment of an integrated system, capable of performing
context-sensitive mapping between functions in a target domain (e.g., functions of a
computer environment) to symbols in a source, or presentation domain (e.g., the
desktop interactive embodiment), and vice-versa (Figure 1). Alternatively, it may be
conceived as an integrated multiple toolkit platform, capable of context-sensitive
mapping. For example, consider typical functions such as file management, electronic
mail and editing, as performed in a computer environment (target domain). Such
functions in the target domain are mapped onto user operations on objects (i.e.,
folders, documents, drawers) of the source domain, namely the desktop.

The visual desktop embodiment in current computer systems performs precisely such
mappings between symbols from a target domain to symbols in the designated source
domain. However, the visual desktop, as embedded in currently available user interface
development environments, does not satisfy the conditions of multiple metaphor
environment, since it does not perform any context-sensitive processing to map
functions from the target domain to corresponding symbols in the source domain. This
is because the source domain is fixed and unique (i.e., the desktop of an office). In
other words, there is no possibility to map a file management function onto a book
operation, and vice versa. Consequently, the construction of multiple metaphor
environments reflects two important properties, namely the explicit embodiment of
alternative metaphors (i.e., desktop, book, library) into the user interface, as well as
their fusion into an integrated environment (i.e., context-sensitive mapping).

To demonstrate the principles underpinning the design and development of multiple
metaphor environments, let us assume three users, namely a sighted user, a child and a
blind user. All three are tasked to carry out a file management operation, namely delete
a file. Since the capabilities of the users differ (e.g., with regards to the modalities that
may be employed to facilitate the interactive task), the interface should ideally

Mapping

Folders

Documents

Files

File m
anagem

ent

D
ocum

ent editing

Electronic m
ail

Target domain functions

Source domain symbols

Figure 1: Concept of source and target domains

59

undertake the required transformation so as to present an appropriate (i.e., accessible
and usable) instantiation, suitable for each user.

Figure 2 depicts indicative examples of plausible alternatives which can be realised in a
programming-intensive manner, by providing separate interface implementations for
each user. Alternatively, the same interface could be built, in such a way, so that it is
capable of context-sensitive processing leading automatically to the undertaking of
suitable transformations to map the file management operation onto appropriate
interactive environments, such as those depicted in Figure 2.

Electronic mail

Document management

Database function

File management
New file
Delete file
Rename file

Target domain functions
(Machine-oriented language)

Source domain symbols
(User-orianted languages)

File nameFile nameFile nameFile nameFile nameFile nameFile name

DELETE

“ta
rg

et”

C
ar

to
on

Desktop

File :File :
D

es
k-

to
p

Delete

“Delete”

“file name”

N
on

-v
is

ua
l

M
a
p
p
in

g

Figure 2: Mapping target domain functions to source (presentation) domain symbols

60

3. Conclusions

From the above, it follows that multiple metaphor environments are necessitated from
the diversity of users (i.e., diverse requirements of different target user groups), the
diversity of contexts of use (i.e., the variety of contexts in which artefacts may be
encountered) and the diversity of interaction platforms (i.e., proliferation of different
interaction toolkits), all of which may necessitate sometimes radical changes in the
design. As a result, the important features characterising such environments are that:
(a) there is a clear separation between knowledge and presentation; (b) the system
integrates components (i.e., toolkits) implementing alternative interactive
embodiments of a particular artefact; (c) the system is capable of performing context-
sensitive processing and selection of suitable symbols to interact with the user, based
on information provided by a dedicated tool usually referred to as user modelling
component, or user information manager, offering information, both general and task
specific, on the current user; (d) multi-modality is preserved through the fusion of
metaphors into an integrated environment.

References

Akoumianakis, D., Savidis, A., Stephanidis, C., in press. Encapsulating intelligent
interactive behaviour in unified user interface artefacts. To appear in the
International Journal on Interacting with Computers, Special Issue on The
Realities of Intelligent Interface Technology.

Carroll., J., Mack, R., Kellog, W., 1988. Interface Metaphors and User Interface
Design. In Handbook of Human-Computer Interaction, M. Helander (Ed.),
North-Holland, pp. 67-82.

Henderson Jr., A., Card, S., 1986. Rooms: the use of multiple virtual workspaces to
reduce space contention in a window-based graphical user interface. ACM
Transactions on Graphics, vol. 5(3), pp. 211-243.

Institute for Personalised Information Environment, 1995. FRIEND21 Human
Interface Architecture Guidelines. Tokyo: Institute for Personalised Information
Environment.

Moll-Carrillo, Salomon G., March, M., Fulton Suri, J., Spreenber, P., 1995.
Articulating a Metaphor Through User-Centred Design. In the Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI'95),
Denver, Colorado, New York: ACM Press, 7-11 May, pp. 566-572.

Savidis, A., Stephanidis, C., 1995. Building Non-Visual Interaction through the
development of the Rooms metaphor. Companion Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI '95), Denver,
Colorado, New York: ACM Press, 7-11 May, pp. 244-245.

Savidis, A., Stephanidis, C., in press. The HOMER UIMS for Dual User Interface
Development: Fusing Visual and Non-visual Interactions. To appear in the
International Journal of Interacting with Computers, 47 pages.

61

Savidis, A., Vernardos, G., Stephanidis, C., 1997. Embedding Scanning Techniques
Accessible to Motor-Impaired Users in the Windows Object Library. In the
Proceedings of 7th International Conference on Human-Computer Interaction
(HCI International ’97), San Francisco, California, USA, 24-29 August, pp. 429-
432.

Stephanidis, C., 1997. Towards the Next Generation of UIST: Developing for all
users. In the Proceedings of 7th International Conference on Human-Computer
Interaction (HCI International ’97), San Francisco, California, USA, 24-29
August, pp. 473-476.

62

