
85

Iterative Information Retrieval Using Fast
Clustering and Usage-Specific Genres

Jussi Karlgren, Ivan Bretan, Johan Dewe, Anders Hallberg, Niklas Wolkert
SICS, University of Helsinki, and Telia Research AB

Abstract

This paper describes how collection specific empirically defined stylistics based genre
prediction can be brought together together with rapid topical clustering to build an
interactive information retrieval interface with multi-dimensional presentation of search
results. The prototype presented addresses two specific problems of information retrieval:
how to enrich the information seeking dialog by encouraging and supporting iterative
refinement of queries, and how to enrich the document representation past the shallow
semantics allowed by term frequencies.

Searching For More Than Words

Today's tools for searching information in a document database are based on term occurrence
in texts. The searcher enters a number of terms and a number of documents where those terms
or closely related terms appear comparatively frequently are retrieved and presented by the
system in list form. This method works well up to a point. It is intuitively understandable, and
for competent users and well edited document bases it will give a predictably mediocre result.
It also has obvious drawbacks.
Term frequencies provide a representation of document content which suffers from being
both shallow and sparse: shallow, in that a text has more facets and features than a list of
terms will be able to represent; and sparse, in that it usually is difficult for users to pinpoint
which term to search for in a multi-laced hierachy of hyponymial relations and sets of near
synonyms, related terms, or other variants.

We focus on two specific drawbacks of the traditional information retrieval search process.
Firstly, as has been acknowledged by many recent research projects and some recent
applications, searches are seldom one-shot affairs. Typically a search is improved and refined
iteratively, until the retrieved set seems good enough, by some metric. Thus, the interface
should support persistence and incremental refinement. Secondly, the objects of study are
more complex than usually is assumed: document topic is more than term frequencies, and
documents are more than the topic they are about.

Information Seeking Dialog

Dialog design is not one of the central fields of computational linguistics; most design
principles have been made outside the field, in by researchers generally interested in human-
computer interaction. This is a pity, for two reasons. First, linguists -- even computational --
have a lot to offer dialog design: language has a lot to do with dialog. Second, language
technology applications need dialog design as well as parsing algorithms or terminology
statistics.

We have put some thought in our dialog design. We want our system to transcend the typical
one-shot dialogs of most fielded information systems today: ``enter your search terms'' --
``browse the resulting list''. Our dialog builds on incremental specialization. The pipeline

86

architecture of the system allows users to specialize a query by specializing the resulting set
to only some of the clusters retrieved initially.

The query and the resulting clusters are represented continuously: retrieved documents are
inserted in the appropriate cluster irrespective of ranking. Specialization of a query can be
done without figuring out specialized terms, since the enriched representation of documents
can be used instead. The clusters themselves represent topic and genre: they can be selected
for further inspection.

Nowhere is there a list format - it should be uninteresting to judge documents by internal
processing order if topic and genre are displayed instead.

Seeking information is seldom done with a clear picture of the goal in one's mind. Typically
users will need to familiarize themselves with the available materials to find how they will
express their information need to the system -- by some preliminary searches, some back-
tracking, and some reformulation of previous tries. An information retrieval interface should
support persistent and manipulable dialog objects which represent the system's understanding
of the search.

Topic and Document Representation

What effect a search term has in terms of retrieval is usually surprising to a user. The
documents it retrieves may vary: if the term or term set is broad, by topic; if the topic or set of
topics is broad, by style. An information retrieval interface should not try to shield the user
from this variation but display it and allow the user to act on the results, iteratively.

Interaction - A Prototype Implementation

The assumption of interface designers is often that users cannot cope with complex interfaces
and that the goal is to reduce the amount of information users are subjected to. We believe
this not to be true. If the information is presented in a manner well founded in the task and
usage context users will accept it.

We have built a fully functional prototype system, DropJaw, to experiment with iterative
search. Our experiment database is the World Wide Web, and DropJaw bases its searches for
web documents by the user entering terms, as in a traditional system. Rather than producing
ranked lists of output based on term occurrence, DropJaw displays the distribution of the
resulting set over two dimensions: dynamically generated topical clusters and user-defined,
document-base oriented genre. The two-dimensional document space is displayed on a work
board or matrix for further user processing.

DropJaw consists of two main modules: Easify, a presentation module, and Chunkify, a
classification and clustering engine. DropJaw is implemented in C++ and runs as a stand-
alone application under Microsoft Windows. It does not include a indexing or search engine --
currently we make use of any of several commercial search engines as indexers. DropJaw
retrieves the documents the indexing service returns and reanalyzes them locally. The
architecture is a pipeline model, where different processing components in Chunkify can be
connected or disconnected -- by user requests to Easify -- to the pipeline
which delivers a stream of documents from the World Wide Web to the user.

Appearance

The main goal for the graphic design and the interaction design has been to build an interface
which appeals to the untrained Internet user and is interesting and fun to use.

87

In most other cases information visualization tools have a somewhat scientific look and
support an interaction designed for specialist users. Most are graphically designed with
mainly the function in mind, rather than aesthetic quality. This most likely is a result of using
standard elements from standard programming tools and little or no involvement of graphic or
industrial designers in the design process.

Information visualization before the computer era (Tufte, 1983), in many cases is
aesthetically very beautiful and pleasant to look at -- without compromising clarity or
usability. There is no reason why the introduction of computers into the information
visualization process should compromise aesthetics. Lack of aesthetic qualities may distract
and bore the user and indirectly cause the loss of potentially useful information; usability is a
function of both underlying functionality and aesthetic quality.

The graphic interface, Easify, is designed to feel playful and fun but without sacrificing a
sense of strict reliability. Because of the high information density in the interface, colors have
been used to help user choice, without dominating the interface look.
The use of strong colors and extreme shapes many times bores users after extensive use; this
interface has a combination of soft, sober colors and simple but interesting shapes built from
carefully chosen and composed non-standard graphic elements.

Functionality

The prototype was designed with a high degree of interactivity in mind. Users initiate the
interaction by entering a query and clicking the search button. Easify sends the current
parameter set -- number of initial clusters, i.a. -- to Chunkify, and starts the background
pipeline. Chunkify consults the indexing engine for a list of likely documents, and starts
retrieving candidate documents from the Internet. After initial clustering, Chunkify starts
delivering documents to Easify for presentation.

The pipeline design leaves the user in control of the interface at all times instead of locking
the interaction: there are indicators to show that the classification engine is running in the
background. A stop button lets the user halt the background processes;
a clear button clears the current document set from the display.

There are many choices that can be made at each step of processing: the user can drag and
drop subsets of the presented document set to a regrouping panel to request Chunkify to
regroup the clusters. This does not stop the first filter in the pipeline from continuing its work:
DropJaw simply adds a finer-grained Chunkify filter to the end of the pipeline. The first set
keeps accruing, and can be returned to if the finer analysis turns out less useful. More
information about the documents can be found in pop up menus, and the documents
themselves are available for perusal at all times.

Document Representation

Rather than defined solely by their list ranking, Easify represents documents as members of
topically and stylistically homogenous clusters in the interface.

Stylistic variation among texts shows through stylistic items: observable choices of linguistic
items. Stylistic items can be observed on any level of linguistic abstraction: lexical, for the
choice between words of similar meaning but different connotations; syntactic, for the choice
between equivalent constructions with different communicative import; textual, for decisions
of textual organization. Each stylistic item is of little import in itself, but taken together the
entire set is indicative of systematic differences. A set of documents with a perceived

88

consistent tendency to make the same stylistic choices is called a genre or, specifically, if it
has an established communicative function, a functional style (see e.g. Enkvist, (1973).
Stylistic variation between genres or language varieties can be detected reliably using a large
battery of quite simple stylistic items such as pronoun counts or relative frequencies of certain
types of constructions such as agentless passives (Karlgren and Cutting, 1994), utilized for
authorship determination by simple calculations of average word length distributions
(Mendenhall, 1887), and with some success predictively for information retrieval (Harman,
1996).

Balanced Corpora for Testing

There is no well-established genre palette for Internet materials, such as one can find for
printed documents. We need to create one to know what test materials to collect. This
involves the risk of circular evaluation of self-established criteria for success, the
interpretation of vaguely expressed and imperfectly understood user expectations, and the
need to face the very real engineering problem of putting genre distinctions to predictive use
for retrieval purposes.

In most computational stylistics, genre has mostly been equated or based on text source: Wall
Street Journal text archive, personal letters, technical documentation (Francis and Kucera,
1982; Källgren, 1990; Karlgren and Cutting, 1994). We find this unsatisfying, and wish to
find a better foundation for analysis; we believe user perceptions are central to this task. We
have built our genre palette (see Table 1) through interviewing users: trying to define genres
that are both reasonably consistent with what users expect and observable and conveniently
computable using measures of stylistic variation as outlined in the previous section. This
work is d escribed in a previous report (Dewe et al, 1998).

Genre Sample
1 Informal, Private ..128

Personal home pages.
2 Public, commercial ...197

Home pages for the general public.
3 Interactive pages ...73

Pages with feed-back: customer dialogue; searchable indexes.
4 Journalistic materials ..94

Press: news, editorials, reviews, popular reporting, e-zines.
5 Reports ...113

Scientific, legal, and public materials; formal text.
6 Other running text ..160
7 FAQs 12
8 Link Collections..148
9 Other listings and tables..225
10 Discussions 24

Contributions to discussions; Usenet News material.
11 Error Messages ...184
Total 1358

Table 1: The current genre palette

89

Recognizing genres automatically

The genre palette, besides being intuitively understandable, needs to be workable for
automatic analysis. We calculate a quite large number of textual features for each individual
text and work them together for a categorization decision using a machine learning algorithm.
The pioneering work by Douglas Biber(1989) on computational corpus-based stylistics has
been descriptive rather than predictive, aiming to find distinctions between different registers
opr varieties of spoken and written language. It has made use of large numbers of stylistic
features collected from previous, non-computational work and weighing them together using
standard methods from multivariate statistics. We use this work as a basis for ours. Most of
Biber's features we use here are rather lexical in nature, for ease of processing: the relative
frequency of certain classes of words such as personal pronouns, emphatic expressions, or
downtoning expressions, for instance. We add more general textual and genre specific
features: relative number of digits, or average word length, for instance. Others yet are
vectored specifically to the Internet material we have been using for experimentation: number
of images or number of HREF links in the document, for instance. We normalize the
measurements by mean and standard deviation, and combine them -- 40 of them, at present --
into simple if-then categorization rules using C4.5, a non-parametric categorization tool
(Quinlan, 1993).

If
- there are more "because" than average,
- longer words than average,
- type-token ratio is above average,
then
- the object is of class Textual
with
- a certainty of 90.0%.

We have a few dozen rules to categorize texts into one of the eleven genres defined in the
above sections. The genres partition into two major hypercategories: textual (04, 05, 06, 07,
10) and non-textual (01, 02, 03, 08, 09, 11); each of them in turn splits to one of five or six
sub-categories. These splits are of varying quality: the first does quite well, something like a
ninety per cent success rate, while the subsplits make the wrong choice somewhere between
once in three or four times.

With additional features and a better defined genre palette results will improve. However, to
get really useful results the categorization should not be exclusive. Every object should
potentially be of several genres.

Clustering By Content -- A Very Simple Clustering Algorithm

The similarity measure for comparing topical document representations with each other and
with cluster centroids is in most respects based on a standard tfc metric, as defined by Salton
and Buckley (1982): standard term frequencies, cosine length normalization, and a standard
collection frequency (idf) measure to factor in collection and domain specific terminology
variation.

Since the emphasis is on a high degree of interactivity, a quick and dirty clustering must be
used for the initial document sets. We work on the assumption that low number, up to 5, of
clusters in the interface is desirable (Hearst and Pedersen, 1996). Since the search engine

90

itself is not included in the system setup, there is no time to wait for all the data to arrive. If
the algorithm would have recourse to the entire document set, the initial clusters could be
formed from a random set, as in Scatter/Gather (Cutting et al, 1992); in our case the first
clustering must proceed on the assumption that the first documents to arrive are a
representative subset of the entire retrieved set. This is a daring assumption and most likely
overly optimistic, but enables us to start clustering sooner, and to restrict the use of the
computationally expensive -- on the order of N squared -- hierarchical clustering by defining
the first clusters on a small number of documents: the first 10-50 documents, which number is
adjustable in the interface. The clustering itself is a variant of the standard metrics: a
hierarchical agglomerative group-average algorithm (e.g. Jain and Dubes, 1988).

After deciding the first i clusters (with i adjustable in the interface) the following documents
are each routed to one of them. A simple assign-to-nearest algorithm is used to decide cluster
membership. The clusters are represented by their centroids -- the N-dimensional centre
points -- as a list of the terms with highest weight, and the matching distance is the same as
for the hierarchical clustering algorithm above. Currently the clusters are not refined on the
fly; this would be easier to implement with the entire clustering stage coupled tighter to the
search engine itself -- these algorithms are substitutes for an integrated system.

Evaluating The Method And The Design

Developer satisfaction

With rather small effort, this both user- and technique-centered development method has
pinpointed certain weaknesses in the design while at the same time encouraging us to pursue
its strong sides further. Users liked the basic idea, and since most components are based on
empirically evaluated knowledge, they proved immediately useful.

Subject satisfaction

The clustering algorithms are very simple; the genre classification just barely flies; some
interface niceties not completely in place yet -- but the prototype runs well enough for the
interaction to be tested and evaluated and the design to be refined.

We gave a small number of subjects two simple retrieval tasks each, one using Easify and the
other using Altavista. The order between questions and interfaces was varied between
subjects.

12 subjects were chosen to be a representative test population. 6 subjects were male, 6 female;
all of age 25-30; and while averages are a poor measure for small populations, in this case the
subject pool hit the mark quite well: they assessed themselves as averagely experienced
internet who use search services occasionally, and have a reasonable understanding of how
search services work.

The tasks were

• Find an album or a concert review about Oasis.
• Find a list of hotels on Malta.

The subjects were given an introduction to the main ideas with Easify, and shown an example
search with the system: all users had used Altavista previously. They were then given the
tasks. The experiment supervisor gave tips on query formulation if the subjects seemed to get
stuck. The subjects used about 5 minutes on each task.

91

The subjects did not do well on the tasks: Altavista search produced better results. In spite of
this, the subjects liked and understood the interface prototype, with some remarks. Some
subjects were confused by the changing cluster texts, but were comfortable with it after a
short explanation. Some wanted the genres to be refined as well, to sub-genres. In spite of the
low response times, all but one of the subjects liked the interface in itself.

Most subjects used the interface as we had intended them to, and many searched for
documents in the genres we intended the results to show up in. The genre determination
algorithm in its current state makes a mistaken choice too often for some of the genres: the hit
rate must be raised to nine out of ten for the concept to work better. Flexible genre
determination would help here -- a document should be allowed to fall into several genres
rather than exclusively one.

Better cluster headings would improve subjects' chances of finding their way through the
document space. This will be absolutely necessary if Easify is to work with very large
document bases, where inspection of documents will be impossible until after a large number
of categorization iterations.

The search engine only delivers the 200 top ranked documents for each query, and this gives
the formulation of the query too large weight in determining if a correct answer can be found.
With a closer integration this bottleneck can be eliminated.

With these improvements -- all of them included in future planned project work and none of
them surprising or dismaying to the design team -- Easify will be able to fulfil its promises to
compete successfully with single-shot single-modal single-channel search machinery.

References

Douglas Biber. 1989. "A typology of English texts", Linguistics, 27:3-43.

Douglass R. Cutting, David R. Karger, Jan O. Pedersen, John W. Tukey. 1992.
Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections.
Proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Copenhagen. New York: ACM.

Johan Dewe, Ivan Bretan, and Jussi Karlgren. 1998. "Assembling a Balanced Corpus from the
Internet". 11th Nordic Computational Linguistics Conference, Copenhagen. Copenhagen
University.

Nils Erik Enkvist. 1973. Linguistic Stylistics. The Hague: Mouton.

W. N. Francis and F. Kucera. 1982. Frequency Analysis of English Usage. Houghton Mifflin.

Donna Harman (ed.). 1996. The Fourth Text REtrieval Conference (TREC-4). National
Institute of Standards Special Publication 500-236. Washington.

Marti A. Hearst and Jan O. Pedersen, Reexamining the Cluster Hypothesis: Scatter/Gather on
Retrieval Results. 1996. Collections. Proceedings of the Nineteenth Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, Zurich.
New York: ACM.

Anil K. Jain and Richard C. Dubes. 1988. Algorithms for Clustering Data. Engelwood Cliffs,
New Jersey: Prentice Hall.

92

Jussi Karlgren. 1996."Stylistic Variation in an Information Retrieval Experiment" In
Proceedings NeMLaP 2, Bilkent, September 1996. Ankara: Bilkent University. (In the
Computation and Language E-Print Archive: cmp-lg/9608003).

Jussi Karlgren and Douglass Cutting. 1994. "Recognizing Text Genres with Simple Metrics
Using Discriminant Analysis", Proceedings of the 15th International Conference on
Computational Linguistics (COLING 94), Kyoto. (In the Computation and Language E-Print
Archive: cmp-lg/9410008).

Gunnel Källgren. 1990. The First Million is Hardest to Get: Corpus Tagging. Proceedings of
the 13th International Conference on Computational Linguistics (COLING-90) Hans Karlgren
(ed.), Helsinki.

T.C. Mendenhall. 1887. "The Characteristic Curves of Composition." Science 9: 237-49.

J. Ross Quinlan. 1993. C4.5: Programs for Machine Learning. San Mateo: Morgan
Kaufmann.

Gerard Salton and Christopher Buckley. Term-Weighting Approaches in Automatic Text
Retrieval. Information Processing and Management 24 (5) 513-23.

Tomek Strzalkowski, Louise Guthrie, Jussi Karlgren, Jim Leistensnider, Fang Lin, Jose
Perez-Carballo, Troy Straszheim, Jin Wang, Jon Wilding. 1996. "Natural Language
Information Retrieval: TREC-5 Report" Proceedings of The Fifth Text REtrieval Conference
(TREC-5). Donna Harman (ed.). National Institute of Standards Special Publication.
Washington.

Edward R. Tufte. 1983. The Visual Display of Quantitative Information.

