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Abstract

The synergy of textual and visual information in Web documents provides great opportunity for im-
proving the image indexing and searching capabilities of Web image search engines. We explore a new
approach for automatically classifying images using image features and related text. In particular, we
de�ne a multi-stage classi�cation system which progressively restricts the perceived class of each image
through applications of increasingly specialized classi�ers. Furthermore, we exploit the related textual
information in a novel process that automatically constructs the training data for the image classi�ers.
We demonstrate initial results on classifying photographs and graphics from the Web.

1 Introduction

The tremendous proliferation of visual information in the World-Wide Web is increasing the need for
more sophisticated methods for automatically analyzing, interpreting and cataloging this imagery. The
recent development of content-based query systems has advanced our capabilities for searching for images
by color, texture and shape features [FSN+95, BFG+96, SC96]. However, these systems are limited in
their capability for automatically assigning meaningful semantic labels to the images.

In this paper, we present a method for classifying images using image features and related textual
information. We focus on the World-Wide Web, where a large variety of imagery consisting of graphics,
animations, photographs, and so forth, is published in Web documents. The multi-stage classi�cation
system provides a hierarchy of classi�ers that are trained from the images on the Web that are su�ciently
annotated by text. In the successive stages, the classes are restricted as the classi�ers utilize more complex
features and increased training.

1.1 Related work

The classi�cation of images in the World-Wide Web has been explored in [RF97, ASF97, FMF+96,
SC97]. In [ASF97], multiple decision trees based upon image feature metrics are used for distinguishing
photographs and graphics on the Web. The results are used to enhance the image search capabilities
of the Webseer system. Alternatively, in order to better index the images in Web documents, Rowe
and Few are developing a system for automatically associating the text in the Web documents with the
corresponding images [RF97]. In [FMF+96], the images are analyzed using a blob-world representation
in which objects such as people and animals are detected by matching the blobs to pre-de�ned body plan
templates. In [SC97], as part of the WebSEEk image and video search engine, we developed a system for
classifying images into subject classes using text derived from image addresses and HTML tags. We now
extend this classi�cation system to utilize image features.

1.2 Multi-stage classi�cation system

The multi-stage image classi�cation system consists of three stages as illustrated in Figure 1. Each stage
utilizes image features and/or text. In the �rst stage, the images are classi�ed into type classes, i.e., color
photos, graphics, gray photos, using a decision tree based upon the analysis of image features in HSV
color space. In the second stage, the images are further classi�ed into more restricted composition classes,
i.e., silhouettes, center-surround images, scenes, and textures using more complex features derived from
image spatial sampling and region extraction. Finally, in the last stage, the images are classi�ed into



semantic classes, i.e., beaches, buildings, nature, sunsets, and so forth, using specialized classi�ers which
are trained from images that are classi�ed from their related text.
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Figure 1: Multistage image classi�cation system uses image feature sets: F0, F1, F2, and related text T2.

In this paper, we present the multi-stage image classi�cation system and describe the processes for
classifying the images into the type, composition and semantic classes. In Section 2, we introduce a new
simple feature decision tree for determining image type. We present, in Section 3, the image composition
classi�cation system. Finally, in Section 4, we present a novel semantics classi�cation system, which
uses composite region templates (CRTs). We evaluate the performance of the CRT-based semantics
classi�cation system in classifying images from eight semantics classes.

2 Stage 1 { image type

In the �rst stage, images are classi�ed into image type classes. The image type hierarchy is illustrated in
Figure 2. We de�ne the following set of image type classes: color photographs, complex color graphics,
simple color graphics, gray photos, gray graphics, b/w (bi-level) photographs, and b/w graphics. The
type classes are given by the root nodes of the decision tree in Figure 2.
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Figure 2: Image type hierarchy with �ve decision points: (1; 2), (3; 4), (5; 6), (7; 8), (9; 10; 11).

2.1 Image type features

In order to automatically classify the images into type classes, the system analyzes the image features
in HSV color space. The transformation and quantization to 166 HSV colors is given in [Smi97]. The
following HSV color features are extracted from the images:

� A = relative amount of black,

� B = relative amount of white,



� C = relative amount of gray,

� D = relative amount of colors which are fully saturated, i.e., saturation = 1,

� E = relative amount of colors which are half saturated, i.e., saturation � 0:5 and saturation < 1,

� F = number of colors present from the 166-color quantized HSV color space,

� G = number of grays present from the 166-color quantized HSV color space,

� H = number of hues present from the 166-color quantized HSV color space,

� I = number saturations present from the 166-color quantized HSV color space.

Table 1 gives the average feature values for the image type classes obtained from a training set of several
thousand images retrieved from the World-Wide Web.
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color photo 0.18 0.06 0.14 0.04 0.10 11.9 111 54 94
complex graphic 0.07 0.03 0.06 0.18 0.23 29.8 77 76 80

simple graphic 0.16 0.26 0.18 0.16 0.07 3.8 17.8 8.0 14.4
gray photo 0.24 0.06 0.70 0 0 0 130 1 1
gray graphic 0.21 0.29 0.49 0 0 0 23.2 1 1

b/w photo 0.60 0.40 0 0 0 0 2 1 1
b/w graphic 0.41 0.59 0 0 0 0 2 1 1

Table 1: Image type classes and corresponding attributes obtained from training images.

Starting at the root node in the decision tree, images are classi�ed into increasingly speci�c type
classes. In order to derive the decision criteria, we computed the image color features for a large set of
training images. For each decision point, we identi�ed the subset of features that were relevant to that
decision. For example, for decision point (1; 2), image features A, B and C are su�cient.

For each decision point, a multi-dimensional space was generated, such that each dimension corre-
sponds to one of the relevant features (i.e., A, B, C). This multi-dimensional space was then partitioned
adaptively to the training images. The frequencies by which training images of each type occur within
the partitions determines the decision criteria. In this way, a new image is quickly classi�ed by simply
obtaining the most likely class in the partition corresponding to its feature values.

2.2 Adaptive partitioning

The M dimensional decision space is iteratively partitioned as follows, where � is a training threshold
(� = 0:9):

1. Assign training images to points in the M dimensional decision space by measuring their feature
values.

2. Assign initial partition R0 to the entire M dimensional decision space.

3. Split R0 into 2
M partitions by bi-secting R0 along each dimension.

4. For each new partition Rj, if :9Ck such that P (CkjRj) > � then split Rj, and repeat Step 3 and
4 as necessary.

5. For each partition Rl after all splitting, assign the likelihood of each class Ck to each partition Rl
as follows:

P (CkjRl) =
P (RljCk)P (Ck)

P (Rl)
;

where P (RljCk) is the number of training points in partition Rl that belong to class Ck, P (Ck) is
the number of training points from class Ck, and P (Rl) is the number of points in partition Rl.



2.3 Type classi�cation

Given the partitioned decision space, the type class of an unknown image is determined by simply looking
up which class Ck maximizes P (CkjRl), where Rl is the partition corresponding to the features of the
unknown image.

3 Stage 2 { image composition

In the second stage, the images are assigned to one of the following composition classes: silhouettes,
center-surround images, scenes and textures. The image composition is determined by the separation of
the center and surround areas in the image.

3.1 Center-surround separation

The image center and surround are separated by using two methods of sampling the surround areas of
the image, depicted in Figure 3 as regions `A,' `B,' `C,' and `D.'

1. Method 1: most prominent color { From regions A, B, C, D, the most prominent color in the sur-
round, i.e., given bym, where, 8m 6= k; hS [m] � hS [k], is back-projected onto the image (see [Smi97]
for details about back-projection) to extract the surround region, depicted in Figure 3 as S1.

2. Method 2: pooled color histogram { From regions A, B, C, D, a pooled color histogram is generated
as follows: hS = hA+hB+hC+hD . Then hS is back-projected onto the image to more completely
extract the surround region, depicted in Figure 3 as S2.
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Figure 3: Image center-surround separation process for image composition classi�cation extracts two
versions of the center regions (C1; C2) and surround regions (S1; S2).

Method 1 (back-projecting the most prominent surround color) is more suited for extracting a sil-
houetted object that is depicted on a single color background. Method 2 (back-projecting the pooled
surround histogram hS) is more suited for separating a multi-color surround from a center region. The
results of the back-projections yield two versions of a center object, denoted by C1 and C2. The attributes
of the extracted center regions (C1; C2) and surround regions (S1; S2) are used to determine the image
composition class.

The attributes used for image composition classi�cation are derived from the sizes of C1 and C2, and
the color distances between C1 and S1, and C2 and S2, respectively. Table 2 indicates the typical values
of the image features used for composition classi�cation. The `size' features indicate the relative sizes of
the extracted image center regions. The `dist' features indicate the distances in HSV color space between
the respective center and surround regions.

Figure 4 illustrates the results from the center-surround separation process for the four image com-
position classes. For the silhouette images, Methods 1 and 2 produce similar results since the surround
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silhouette 0.59 0.58 0.89 0.68

center-surround 0.54 0.23 0.69 0.54
scene 0.83 0.19 0.40 0.23
texture 0.14 0.05 0.19 0.12

Table 2: Image composition classes and corresponding center-surround features.

typically contains a single color. For the center-surround images, Method 2 extracts a larger surround
than Method 1 since the surround contains more than one color. Furthermore, the color distance between
the center and surrounds in both cases is relatively large. In the case of the scene images, Method 2
extracts a large surround region while method 1 extracts a small surround region. Finally, for textures,
both methods fail at separating a center from the surround.

2

silhouettes texturesscenescenter-surround
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Figure 4: Center-surround separation examples using Methods 1 and 2 for the four image composition
classes.

3.2 Composition classi�cation

Given the image composition feature set, the decision space is derived from training images using adaptive
partitioning of the 4-dimensional feature space. The classi�cation of an unknown image is performed by
simply extracting the center-surround features and �nding the partition corresponding to the feature
values. Similar to the case for image type classi�cation, the composition label is assigned by the most
likely composition class in the partition.

4 Stage 3 { image semantics

In the �nal stage, the images are classi�ed into semantics classes derived from a semantics ontology
(described in [SC97]). Here, we examine eight semantics classes: beaches, buildings, crabs, divers, horses,
nature, sunsets, and tigers.

4.1 Text-to-subject mapping

The semantics classes are de�ned by identifying training images on the Web that are associated with
relevant text. These images are assigned to the semantics classes by mapping the key-terms to semantics
classes1. For example, the key-term `sunset' is mapped into semantics class `nature/sunsets.' This process

1The WebSEEk demo: http://disney.ctr.columbia.edu/webseek



is described in more detail in [SC97]. We now describe how the images that cannot be semantically
classi�ed using text due to lack of useful annotations, are classi�ed using images features based upon
composite region templates.

4.2 Composite region templates

The composite region templates (CRTs) are de�ned from training images from the semantic classes. The
system extracts the color regions from the images and generates a set of region strings for each semantic
class. The region strings for each class are then consolidated into the sets of CRTs.

4.2.1 Region string generation

The region strings are generated in a series of �ve vertical scans of the image which order the extracted
regions from top-to-bottom. The �ve vertical scans are equally spaced horizontally. Since the images are
normalized to 100 pixels, each vertical scan covers a 20-pixel wide area. In each scan, the symbol value
of each consecutive region is concatenated onto the scan's region string. In general, the symbol values
(i.e., symbol `A,' `B,' `C' in Figure 5) represent the index values of the features of the regions.
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Figure 5: Examples of region extraction and region string generation using a top-to-bottom orderings (a)
(CDGFG, CDGFG, CBDFG, BABDFG, BAFG), (b) (CGDF, CBCDGIF, BHCDGFI, BHCDGFIFG,
CBHGFIG).

An example of the region string generation process for two nature images is illustrated in Figure 5.
We can see that for the two nature images, the symbols `A,' `B,' and `C' (sky) typically preceed symbols
`F,' and `G' (grass). The objective of the CRT method is to detect these important relationships between
regions for each semantic class. The top-to-bottom scans capture the relative vertical placement of the
regions. Note that the �ve region strings from an image are not subsequently distinguished by the
horizontal position of the scan.

De�nition 1 Region String. A region string S is a series of symbols S = s0s1s2 : : : sN�1, which is

generated from the regions of an image where sn is the symbol value (i.e., color index value) of the nth

successive region in a top-to-bottom scan.

4.2.2 Region string consolidation

After the region strings are generated, they are consolidated to generate the CRTs in order to capture the
recurring arrangements of the regions within the images and semantic classes. The CRTs characterize,
in general, the order of the symbols in the region strings but not their adjacency. The likelihood of these
CRTs within and across the semantics classes forms the basis of the semantics classi�cation system.

De�nition 2 CRT. A composite region template T is an ordering of M symbols, T = t0t1t2 : : : tM�1.



The region strings are consolidated by detecting and counting the frequencies of the CRTs in the set of
region strings. For example, the test for T = t0t1t2 in region string S is given by I(T;S), where

I(T;S) =

8<
:

1 if sl = t0 and sm = t1
and sn = t2 and l � m � n

0 otherwise.

The frequency of each CRT, Ti, in a set of region strings fSjg is then given by P (Ti), where

P (Ti) =
X
j

I(Ti;Sj):

The frequency of each CRT, Ti, in the set of region strings fSjgk from semantic class Ck is given by
P (TijCk), where

P (TijCk) =
X

8jSj2Ck

I(Ti;Sj):

4.2.3 CRT library

The CRTs derived from the training images construct the CRT library, which is de�ned as follows:

De�nition 3 CRT library. A composite region template library is given by a set of (K + 2)-tuples:

fTi; P (Ti); P (TijC0); P (TijC1); : : : ; P (TijCK�1)g;

where K is the number of semantic classes.

4.3 Decoding image semantics

Once the CRT library is built from training images, it is used to semantically classify the unknown
images. The semantics of an unknown image are decoded from its set of region strings using the CRT
library as follows:

1. First, the region strings for the unknown image are extracted and consolidated into a set of CRTs.

2. For each CRT, T0
i, from the unknown image, P (CkjT0

i) is computed from the entries in the CRT
library from:

P (CkjT
0
i) =

P (T0
ijCk)

P (T0
i)

P (Ck):

3. The classi�cation of the unknown image is then given by: assign image to class l when

8l6=k ;
X
i

P (CljT
0
i) >
X
i

P (CkjT
0
i): (1)

That is, class Cl best explains the CRTs represented in the region strings of the unknown image.

4.4 Semantics classi�cation evaluation

We evaluate the CRT-based semantics decoding method by measuring its performance in classifying
unknown images from the eight semantic classes. Example images are illustrated in Figure 6. In the
experiments, images from eight semantic classes were classi�ed using the CRT method.

In total, 261 images were identi�ed as belonging to the eight semantic classes. These 261 images were
divided into non-overlapping training and test sets according to Table 3. The system used the 71 training
images to generate the CRT library. The remaining 190 test images were used to evaluate the semantics
classi�cation performance of the system. The classi�cation results are given in Table 3.

Given the eight semantics classes, the semantics decoding system using CRTs provides a classi�cation
rate of 0.784. The majority of classi�cation errors resulted from a confusion between the buildings and
nature classes. This is not surprising since both classes, as illustrated in Figure 6, often depict similar
scenes, such as blue skies, above brown objects, above green grass.
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Figure 6: Example images from the eight semantics classes used to evaluate the CRT semantics decoding
system: beaches, buildings, crabs, divers, horses, nature, sunsets, and tigers.
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# total 261 14 56 9 33 26 46 46 31

# train 71 7 10 4 10 10 10 10 10
# test 190 7 46 5 23 16 36 36 21
# correct 149 6 30 5 23 14 20 31 21

% correct 78.4 85.7 65.2 100 100 87.5 55.6 86.1 100

Table 3: Image semantics classi�cation experiment results using 71 training images and 190 test images
from eight semantics classes.

5 Summary and Future Work

We presented a new system for classifying images using features and related text. The multi-stage image
classi�cation assigns the images to type, composition and semantics classes. Image type and composition
are determined by mapping image features into a decision space that is adaptively partitioned using
training images. Image semantics are determined by a novel system which matches the arrangements of
regions in the images to composite region templates (CRTs). We developed a process by which this CRT
library is constructed automatically from the images that are textually annotated.

We are applying the multi-stage image classi�cation system to the classi�cation of images on the
World-Wide Web in order to better index and catalog this visual information. In particular, we are
investigating the performance of the image semantics decoding system using several thousand semantics
classes. Finally, we are exploring the utility of the image classi�cation system for customizing the delivery
of Web documents.
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