Hummingbird's Fulcrum SearchServer at CLEF 2001

Stephen Tomlinson'
Hummingbird
Ottawa, Ontario, Canada

August 4, 2001

Abstract

Hummingbird submitted ranked result sets for all 5 Monolingual Information Retrieval tasks (German, French,
Italian, Spanish and Dutch) of the Cross-Language Evaluation Forum (CLEF) 2001. For each language, at least
one SearchServer run had more average precision scores above the median than below. The submitted German,
Dutch and Spanish runs, compared to the medians in average precision by topic, had a significance level of less
than 1% (by the sign test), which is statistically significant. SearchServer’s linguistic expansion was found to
boost all investigated precision scores, including average precision and Precision@5, for all 6 investigated
languages (German, French, Italian, Spanish, Dutch and English). Enabling linguistic expansion was found to
increase average precision by 43% in German, 30% in Dutch, 18% in French, 16% in Italian, 12% in Spanish
and 12% in English. In terms of the number of topics of higher and lower average precision, the German, Dutch
and Spanish runs with linguistics enabled, compared to corresponding runs with linguistics disabled, had a
significance level of less than 1% (by the sign test).

1 Introduction

Hummingbird's Fulcrum SearchServer kernel is an indexing, search and retrieval engine for embedding in
Windows and UNIX information applications. SearchServer, originally a product of Fulcrum Technologies,
was acquired by Hummingbird in 1999. Fulcrum, founded in 1983 in Ottawa, Canada, produced the first
commercial application program interface (API) for writing information retrieval applications, Fulcrum
Ful/Text. The SearchServer kernel is embedded in 5 Hummingbird products, including SearchServer, an
application toolkit used for knowledge-intensive applications that require fast access to unstructured
information.

SearchServer supports a variation of the Structured Query Language (SQL), called SearchSQL, which has
extensions for text retrieval. SearchServer conforms to subsets of the Open Database Connectivity (ODBC)
interface for C programming language applications and the Java Database Connectivity (JDBC) interface for
Java applications.  Almost 200 document formats are supported, such as Word, WordPerfect, Excel,
PowerPoint, PDF and HTML. Many character sets and languages are supported, including the major European
languages, Japanese, Korean, Chinese, Greek and Arabic. SearchServer's Intuitive Searching algorithms were
updated for version 4.0 which shipped in Fall 1999, and in subsequent releases of other products. SearchServer
5.0, which shipped in Spring 2001, works in Unicode internally [3] and contains improved natural language
processing technology, particularly for languages with many compound words, such as German, Dutch and
Finnish.

2 System Description
All experiments were conducted on a single-cpu desktop system, OTWEBTREC, with a 600MHz Pentium III

cpu, 512MB RAM, 186GB of external disk space on one e: partition, and running Windows NT 4.0 Service
Pack 6. For the official CLEF runs, internal development builds of SearchServer 5.0 were used (5.0.501.115

' Core Technology, Research and Development, stephen.tomlinson@hummingbird.com

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 1 of 10



plus some experimental changes motivated by tests on the CLEF 2000 collections). For the diagnostic runs,
internal build 5.0.504.157 was used.

3 Setup
We describe how SearchServer was used to handle the 5 Monolingual tasks of CLEF 2001.
3.1 Data

The CLEF 2001 collections consisted of tagged (SGML-formatted) news articles (mostly from 1994) in 6
different languages: German, French, Italian, Spanish, Dutch and English. The articles (herein called
“documents” or “logical documents”) were combined into “library files” of typically a few hundred logical
documents each. The collections were made available in compressed tar archives on the Internet. We
downloaded the archives, uncompressed them, untarred them and removed any support files (e.g. dtd files)
which weren’t considered part of the collection. The library files were stored in 6 subdirectories of
e:\data\CLEF (German, French, Italian, Spanish, Dutch and English). No further pre-processing was done on
the data, i.e. SearchServer indexed the library files directly. Operations such as identifying logical documents
and enforcing the restrictions on fields permitted for indexing were handled by the text reader (described
below).

Language | Text Size (uncompressed) Number of Documents | Number of Library Files
German 555,285,140 bytes (530 MB) | 225,371 520

French 253,528,734 bytes (242MB) 87,191 682

Italian 290,771,116 bytes (277MB) 108,578 721

Spanish 544,347,121 bytes (519MB) 215,738 364

Dutch 558,560,087 bytes (533MB) 190,604 1228

English 441,048,231 bytes (421MB) 113,005 365

Table 1: Sizes of CLEF 2001 Collections

For more information on the CLEF collections, see the CLEF web site [1].

3.2 Text Reader

To index and retrieve data, SearchServer requires the data to be in Fulcrum Technologies Document Format
(FTDF). SearchServer includes “text readers” for converting most popular formats (e.g. Word, WordPerfect,
etc.) to FTDF. A special class of text readers, “expansion” text readers, can insert a row into a SearchServer
table for each logical document inside a container, such as directory or library file. Users can also write their
own text readers in C for expanding proprietary container formats and converting proprietary data formats to
FTDF.

The library files of the CLEF 2001 collections consisted of several logical documents, each starting with a
<DOC> tag and ending with a </DOC> tag. After the <DOC> tag, the unique id of the document, e.g.
SDA.940101.0001, was included inside <DOCNO>..</DOCNO> tags. The custom text reader called cTREC,
originally written for handling TREC collections [6], handled expansion of the library files of the CLEF
collections and was extended to support the CLEF guidelines of only indexing specific fields of specific
documents.

In expansion mode (/E switch), cTREC scans the library file and for each logical document determines its start
offset in the file (i.e. offset of <DOC> tag), its length in bytes (i.e., distance to </DOC> tag), and extracts its
document id (from inside <DOCNO>..</DOCNO> tags). SearchServer is instructed to insert a row for each
logical document. The filename column (FT_SFNAME) stores the library filename. The text reader column
(FT_FLIST) includes the start offset and length for the logical document (e.g.

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 2 of 10



nti/t=Win_1252 UCS2:cTREC/C/100000/30000). The document id column (controllable with the /d switch),
contains the document id.

In CLEF format translation mode (/C switch), cTREC inserts a control sequence to turn off indexing at the
beginning of the document. cTREC inserts a control sequence to enable indexing after tags for which indexing
is permitted (e.g. after <TEXT> in a Frankfurter Rundschau document), and inserts control sequences to disable
indexing just before its corresponding closing tag (e.g. </TEXT>). The document type is determined from the
prefix of the DOCNO (e.g. all Frankfurter Rundschau document ids had “FR” as a prefix). The entities
described in the DTD files were also converted, e.g. “&equals;” was converted to the equal sign “=".

The documents were assumed to be in the Latin-1 character set, the code page which, for example, assigns e-
acute (é) hexadecimal 0xe9 or decimal 233. cTREC passes through the Latin-1 characters, i.e. does not convert
them to Unicode. SearchServer’s Translation Text Reader (nti), was chained on top of cTREC and the
Win_1252 UCS?2 translation was specified via its /t option to translate from Latin-1 to the Unicode character set
desired by SearchServer.

3.3 Indexing

A separate SearchServer table was created for each language, created with a SearchSQL statement such as the
following:

CREATE SCHEMA CLEFO01DE CREATE TABLE CLEFO01DE
(DOCNO VARCHAR (256) 128)

TABLE LANGUAGE 'GERMAN'

STOPFILE 'GER AW.STP'

PERIODIC

BASEPATH 'E:\DATA\CLEF';

The TABLE _LANGUAGE parameter specifies which language to use when performing linguistic operations at
index time, such as breaking compound words into component words and stemming them to their base form.
The STOPFILE parameter specifies a stop file containing typically a couple hundred stop words to not index;
the stop file also contains instructions on changes to the default indexing rules, for example, to enable accent-
indexing, or to change the apostrophe to a word separator. The PERIODIC parameter prevents immediate
indexing of rows at insertion time. The BASEPATH parameter specifies the directory from which relative
filenames of insert statements will be applied. The DOCNO column was assigned number 128 and a maximum
length of 256 characters.

Here are the first few lines of the stop file used for the French task:

IAC = "\u0300-\u0345"
PST:" Ten

STOPLIST =

a

a

afin

# 112 stop words not shown

The TAC line enables indexing of the specified accents (Unicode combining diacritical marks 0x0300-0x0345).
Accent indexing was enabled for all runs except the Italian and English runs. Accents were known to be
specified in the Italian queries but were not consistently used in the Italian documents. The PST line adds the
specified characters (apostrophes in this case) to the list of word separators. The apostrophes were changed to
word separators for all submitted runs except the German and English runs. Probably it would have made no
difference to have also included it in the German runs. Note that the IAC syntax is new to SearchServer 5.0,
and the interpretation of the PST line may differ from previous versions.

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 3 of 10



Into each table, we just needed to insert one row, specifying the top directory of the library files for the
language, using an Insert statement such as the following:

INSERT INTO CLEFO1DE ( FT_ SFNAME, FT FLIST ) VALUES
('"GERMAN', 'CTREC/E/d=128:s!nti/t=Win 1252 UCS2:cTREC/C/@:s"');

To index each table, we just executed a Validate Index statement such as the following:

VALIDATE INDEX CLEFO1DE VALIDATE TABLE
TEMP_FILE SIZE 2000000000 BUFFER 256000000;

The VALIDATE TABLE option of the VALIDATE INDEX statement causes SearchServer to review whether
the contents of container rows, such as directory rows and library files, are correctly reflected in the table. In
this particular case, SearchServer initially validated the directory row by inserting each of its sub-directories and
files into the table. Then SearchServer validated each of those directory and library file rows in turn, etc.
Validating library file rows invoked the cTREC text reader in expansion mode to insert a row for each logical
document in the library file, including its document id.

After validating the table, SearchServer indexed the table, in this case using up to 256MB of memory for sorting
(as per the BUFFER parameter) and using temporary sort files of up to 2GB (as per the TEMP_FILE SIZE
parameter) (no CLEF collection actually required a sort file that big). The index includes a dictionary of the
distinct words (after some Unicode-based normalizations, such as converting to upper-case and decomposed
form) and a reference file with the locations of the word occurrences. Additionally, by default, each distinct
word is stemmed and enough information saved so that SearchServer can efficiently find all occurrences of any
word which has a particular stem.

4 Search Techniques

The CLEF organizers created 50 “topics” and translated them into many languages. Each translated topic set
was provided in a separate file (e.g. the German topics were in a file called “Top-de01.txt”). The topics were
numbered from C041 to C090. Each topic contained a “Title” (subject of the topic), “Description” (a one-
sentence specification of the information need) and “Narrative” (more detailed guidelines for what a relevant
document should or should not contain). The participants were asked to use the Title and Description fields for
at least one automatic submission per task this year to facilitate comparison of results.

We created an ODBC application, called QueryToRankings.c, based on the example stsample.c program
included with SearchServer, to parse the CLEF topics files, construct and execute corresponding SearchSQL
queries, fetch the top 1000 rows, and write out the rows in the results format requested by CLEF. SELECT
statements were issued with the SQLExecDirect api call. Fetches were done with SQLFetch (typically 1000
SQLFetch calls per query).

4.1 Intuitive Searching

For all runs, we used SearchServer's Intuitive Searching, i.e. the IS ABOUT predicate of SearchSQL, which
accepts unstructured text. For example, for the German version of topic C041, the Title was “Pestizide in
Babykost” (Pesticides in Baby Food), and the Description was “Berichte iiber Pestizide in Babynahrung sind
gesucht” (Find reports on pesticides in baby food). A corresponding SearchSQL query would be:

SELECT RELEVANCE ('V2:3') AS REL, DOCNO

FROM CLEFO1DE

WHERE FT TEXT IS ABOUT 'Pestizide in Babykost Berichte uber Pestizide
in Babynahrung sind gesucht'

ORDER BY REL DESC;

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 4 of 10



This query would create a working table with the 2 columns named in the SELECT clause, a REL column
containing the relevance value of the row for the query, and a DOCNO column containing the document's
identifier. The ORDER BY clause specifies that the most relevant rows should be listed first. The statement
“SET MAX _SEARCH_ROWS 1000” was previously executed so that the working table would contain at most
1000 rows.

4.2 Linguistic Expansion

SearchServer uses lexicon-based natural language processing technology to “stem” each distinct word to one or
more base forms, called stems. For example, in English, “baby”, “babied”, “babies”, “baby’s” and “babying” all
have “baby” as a stem. Compound words in languages such as German, Dutch and Finnish should produce

multiple stems; e.g., in German, “babykost” has “baby” and “kost” as stems.

By default, Intuitive Searching stems each word in the query, counts the number of occurrences of each stem,
and creates a vector. Optionally some stems are discarded (secondary term selection) if they have a high
document frequency or to enforce a maximum number of stems, but we didn’t discard any stems for our CLEF
runs. The index is searched for documents containing terms which stem to any of the stems of the vector.

Whether or not to stem, whether or not to allow multiple stems per term, and which language to use are
controlled by the VECTOR_GENERATOR set option:

Language | Recommended VECTOR GENERATOR (SearchServer 5.0)

German 'word! ftelp/lang=german/base | * | word!ftelp/lang=german/expand'
French 'word! ftelp/lang=french/base/single | * | word!ftelp/lang=french/expand'
Italian 'word! ftelp/lang=italian/base/single | * | word!ftelp/lang=italian/expand'
Spanish 'word! ftelp/lang=spanish/base/single | * | word!ftelp/lang=spanish/expand'
Dutch 'word! ftelp/lang=dutch/base | * | word!ftelp/lang=dutch/expand'

English 'word! ftelp/lang=english/base/single | * | word!ftelp/lang=english/expand'

Table 2: Recommended VECTOR_GENERATOR Settings (SearchServer 5.0)

The above settings were the ones used for the submitted runs, and subsequent experiments (below) confirmed
they were the best ones. The main issue was whether to specify “/base” or “/base/single” in the first part of the
VECTOR_GENERATOR. Experiments on last year’s collections found that “/base” worked better for German
and “/base/single” worked better for French and Italian. For languages with compound words, such as German,
“/base” is necessary for all components of the compound words to be included. For languages with few
compound words, in the rare cases when multiple stems are returned, they often are spurious; e.g. in English, for
“Acknowledgements”, the 2 stems currently returned are “acknowledgement” and “acknowledgment”, which
appear to be just alternate spellings, so keeping both stems would improperly double-weight the term, hurting
ranking. Based on this reasoning, we assumed “/base” would be better for Dutch (because Dutch contains many
compound words), and “/base/single” would be better for Spanish (because it does not contain many compound
words); again, experiments below confirmed these were the best choices.

Besides linguistic expansion, we did not do any other kinds of query expansion. For example, we did not use
approximate text searching for spell-correction because the queries were believed to be spelled correctly. We
did not use row expansion or any other kind of blind feedback technique.

4.3 Statistical Relevance Ranking

SearchServer calculates a relevance value for a row of a table with respect to a vector of stems based on several
statistics. The inverse document frequency of the stem is estimated from information in the dictionary. The
term frequency (number of occurrences of the stem in the row (including any term that stems to it)) is
determined from the reference file. The length of the row (based on the number of indexed characters in all
columns of the row, which is typically dominated by the external document), is optionally incorporated. The

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 5 of 10



already-mentioned count of the stem in the vector is also used. SearchServer synthesizes this information into a
relevance value in a manner similar to [4] (particularly the Okapi approach to term frequency dampening) and
also shares some elements of [5]. SearchServer's relevance values are always an integer in the range 0 to 1000.

SearchServer's RELEVANCE METHOD setting can be used to optionally square the importance of the inverse
document frequency (by choosing a RELEVANCE METHOD of 'V2:4' instead of '"V2:3"). SearchServer's
RELEVANCE DLEN _IMP parameter controls the importance of document length (scale of 0 to 1000) to the
ranking.

Because the evaluation program (trec_eval) may re-order rows with the same relevance value, we post-process
the results files by adding a descending fraction (0.999, 0.998, 0.997, etc.) to the relevance values of the rows
for each topic to ensure that the order of evaluation is identical to the order SearchServer returned the
documents.

4.4 Query Stop Words

Our QueryToRankings program removed words such as “find”, “relevant” and “document” from the topics
before presenting them to SearchServer, i.e. words which are not stop words in general but were commonly used
in the topics as general instructions. The lists for the CLEF languages were developed by examining the CLEF
2000 topics (not this year’s topics). After receiving the relevance assessments this year, we did an experiment,
and this step had only a minor benefit; the average precision increased just 1% or 2% in all languages (in
absolute terms, from 0.0031 in Italian to 0.0107 in French). It doesn’t appear to be important to comb the old
topics files for potential query stop words.

5 Results

Below we present an analysis of our results, including results of some unofticial “diagnostic” runs. We look at
the following evaluation measures: Precision is the percentage of retrieved documents which are relevant.
Precision@n is the precision after n documents have been retrieved. Average precision for a topic is the
average of the precision after each relevant document is retrieved (using zero as the precision for relevant
documents which are not retrieved). Recall is the percentage of relevant documents which have been retrieved.
Interpolated precision at a particular recall level for a topic is the maximum precision achieved for the topic at
that or any higher recall level. For a set of topics, the measure is the average of the measure for each topic (i.e.
all topics are weighted equally).

The Monolingual Information Retrieval tasks were to run 50 queries against document collections in the same
language and submit a list of the top-1000 ranked documents to CLEF for judging (in June 2001). The 5
languages were German, French, Italian, Spanish and Dutch. CLEF produced a “qrels” file for each of the 5
tasks: a list of documents judged to be relevant or not relevant for each topic. From these, the evaluation
measures were calculated with Chris Buckley's trec_eval program. Additionally, the CLEF organizers
translated the topics into many more languages, including English, and also provided a comparable English
document collection, for use in the multilingual task. By grepping the English results out of the multilingual
grels, we were able to produce a comparable monolingual English test collection for diagnostic runs.

For some topics and languages, no documents were judged relevant. The precision scores are just averaged over
the number of topics for which at least one document was judged relevant.

When comparing two runs and finding that one run had a higher score on more topics than the other, we like to
know how likely it is that this result could have happened by chance. For each result, we use the sign test to
compute the significance level (also known as the p-value) of the result in relation to the hypothesis that when
the two runs differ in their average precision score on a topic (by the 4™ decimal place), they are equally likely
to have the higher score. If the significance level is 1% or less, then we can say the hypothesis is contradicted
by the result at the 1% level and consider the result to be statistically significant, i.e. this result is unlikely to
have happened if the runs were really using equally viable approaches regarding the average precision measure.

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 6 of 10



The computation of the significance level is straightforward. Let f(x,n) = (n!/((n-x)!x!))*(0.5*n), which is the
probability of x successes in n trials when the probability of success is 0.5. Let X; be the number of topics on
which run 1 scored higher, and let X, be the number of topics on which run 2 scored higher. Let n = X; + X.
Let Xinin = min(X;, X;). If X; <> X,, then the significance level is 2*(f(0,n) + f(1,n) + ... + {(Xpnin,n)). If
X1==X,, then the significance level is 100%. Example: if in 50 topics, one run scores higher in 34, lower in 15,
and ties in 1, then the significance level is 2*(f(0,49) + f(1,49) + ... + {(15,49)), which is 0.9%.

5.1 Submitted runs

Tables 3.1 to 3.5 show the precision scores of our submitted runs for each language of the Monolingual
Information Retrieval task. The CLEF organizers have also given the participants the median average precision
scores on each topic for each language. We show the number of topics on which our runs scored higher, lower
and tied (to 4 decimal places) with the median in average precision, and compute the significance level.

For each language, at least one SearchServer run had more average precision scores above the median than
below. The submitted German, Dutch and Spanish runs had a significance level of less than 1%.

All submitted runs used both the Title and Description fields. Runs humDEO1, humFRO1, humITO1, humESO1
and humNLO1 used relevance method ‘V2:3” and RELEVANCE DLEN _IMP 500; these settings typically
worked best on last year’s collections. Runs humDEOQ1x, humFRO1x, humIT01x, humESO1x, humNLO1x used
relevance method ‘V2:4” and RELEVANCE DLEN_IMP 750, which worked well on the TREC-9 Main Web
Task last year [6]. After receiving the relevance assessments, preliminary experiments suggest that a
combination of “V2:3” and 750 would have been best for most languages this year, but it makes little difference.

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vs Median | SigL
humDEO1 0.4403 547% | 49.8% | 44.6% | 0.7836 | 0.5377 | 39-8-2 0.0%
humDEO1x | 0.4474 | 56.3% | 51.4% | 44.8% | 0.8206 | 0.5521 36-9-4 0.0%
Median 0.3660 | n/a n/a n/a n/a n/a 0-0-49 -

Table 3.1: Precision of Submitted German runs

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vs Median | SigL
humFRO1 0.4825 | 55.5% | 443% | 36.3% | 0.8149 | 0.5936 | 28-14-7 4.4%
humFRO1x 0.4789 | 49.8% | 42.2% | 35.4% | 0.7788 | 0.5811 27-18-4 23%
Median 0.4635 n/a n/a n/a n/a n/a 0-0-49 -

Table 3.2: Precision of Submitted French runs

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vs Median | SigL
humITO1 0.4555 | 54.0% | 49.4% | 41.2% | 0.7830 | 0.5727 | 23-20-4 76%
humITO01x 0.4332 | 50.6% | 46.2% | 39.8% | 0.7069 | 0.5421 15-30-2 2.6%
Median 0.4578 n/a n/a n/a n/a n/a 0-0-47 -

Table 3.3: Precision of Submitted Italian runs

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 7 of 10



Run AvgP P@5 P@10 P@20 | RecO Rec30 vs Median | SigL

humESO01 0.5378 68.6% | 60.8% 52.8% | 0.8708 0.6644 | 35-7-7 0.0%

humESO1x 0.5363 68.2% | 60.0% 51.1% | 0.8514 | 0.6681 38-7-4 0.0%

Median 0.4976 n/a n/a n/a n/a n/a 0-0-49 -
Table 3.4: Precision of Submitted Spanish runs

Run AvgP P@5 P@10 P@20 | RecO Rec30 vs Median | SigL

humNLO1 0.3844 52.0% | 41.8% 34.1% | 0.7558 0.5145 39-6-5 0.0%

humNLO1x | 0.3831 50.4% | 45.4% 33.7% | 0.7504 | 0.4940 | 37-10-3 0.0%

Median 0.2986 n/a n/a n/a n/a n/a 0-0-50 -
Table 3.5: Precision of Submitted Dutch runs

Glossary:

AvgP: Average Precision (defined above)
P@S, P@10, P@20: Precision after 5, 10 and 20 documents retrieved, respectively
Rec0, Rec30: Interpolated Precision at 0% and 30% Recall, respectively

vs Median: Number of topics on which the run scored higher, lower and equal (respectively) to the median

average precision (to 4 decimal places)

SigL: Significance Level: the probability of a result at least as extreme (vs Median) assuming it is equally

likely that a differing score will be higher or lower

5.2 Impact of Linguistic Expansion

To measure the benefits of SearchServer’s linguistic technology, Tables 4.1 to 4.6 show runs which were done
with a more recent SearchServer build in August 2001.
VECTOR_GENERATOR setting. The first run set VECTOR_GENERATOR to the empty string, which
The second run set /base but not /single in the first part of the
VECTOR_GENERATOR, which allowed all stems for a term to be added to the vector. The third run set /base
and /single in the first part of the VECTOR_GENERATOR, allowing only a single stem to be added to the
vector for each term. For all these runs, both the Title and Description were used, the relevance method was

disables linguistic processing.

‘V2:3* and the RELEVANCE DLEN_IMP setting was 750:

For each language, the runs vary in their

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vsno ling | SigL
DE: no ling 0.3269 | 46.1% | 43.7% | 36.4% | 0.7102 | 0.4038 | - -
DE: /base 0.4669 | 58.0% | 52.4% | 47.4% | 0.8186 | 0.5699 | 42-6-1 0.0%
DE: /base/single | 0.3843 | 49.8% | 45.7% | 38.3% | 0.7489 [ 0.4957 | 35-13-1 0.2%
Table 4.1: Impact of Linguistic Expansion in German
Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vsno ling | SigL
FR: no ling 04114 | 46.9% | 38.0% | 33.0% | 0.7301 | 0.5047 | - -
FR: /base 04712 | 49.8% | 42.7% | 35.5% ] 0.7991 | 0.5776 | 27-18-4 23%
FR: /base/single 0.4855 | 52.2% | 43.1% | 36.2% | 0.8121 [ 0.5927 | 28-17-4 14%

Table 4.2: Impact of Linguistic Expansion in French

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 8 of 10




Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vsno ling | SigL
IT: no ling 0.3900 | 48.1% | 43.0% | 35.5% [0.7076 [ 0.4729 | - -
IT: /base 0.4309 | 50.6% | 48.5% | 40.1% | 0.7401 | 0.5422 | 25-19-3 29%
IT: /base/single 0.4514 | 50.6% | 48.5% | 40.9% | 0.7456 | 0.5553 | 28-16-3 9.6%

Table 4.3: Impact of Linguistic Expansion in Italian

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vsno ling | SigL
ES: no ling 0.4848 | 63.3% | 559% | 47.1% [ 0.8117 [ 0.6154 | - -

ES: /base 0.5316 | 68.2% | 60.2% | 51.0% | 0.8621 | 0.6608 | 28-18-3 18%
ES: /base/single 0.5429 | 70.6% | 61.6% | 51.9% | 0.8842 | 0.6726 | 33-13-3 0.5%

Table 4.4: Impact of Linguistic Expansion in Spanish

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vsno ling | SigL
NL: no ling 03189 | 424% |36.8% | 28.0% [0.6603 [0.4197 |- -

NL: /base 0.4144 | 54.0% | 45.6% | 35.1% | 0.7939 | 0.5313 | 37-10-3 0.0%
NL: /base/single | 0.3700 [ 49.2% | 40.8% | 32.6% | 0.7349 | 0.4912 | 31-16-3 4.0%

Table 4.5: Impact of Linguistic Expansion in Dutch

Run AvgP P@5 P@l0 | P@20 [ RecO Rec30 vsno ling | SigL
EN: no ling 04732 | 48.9% |39.1% | 29.7% [ 0.7765 | 0.5959

EN: /base 0.5245 | 52.8% | 41.5% | 31.6% [ 0.8112 [ 0.7026 | 26-13-8 5.3%
EN: /base/single | 0.5317 | 52.8% | 41.7% | 31.7% | 0.8213 | 0.7029 | 26-13-8 5.3%

Table 4.6: Impact of Linguistic Expansion in English

Impact of Linguistic Expansion: For all 6 investigated languages (German, French, Italian, Spanish, Dutch and
English), SearchServer’s linguistic expansion was found to boost all investigated precision scores, including
average precision and Precision@5. For 3 languages, German, Dutch and Spanish, the results (of comparing the
number of topics of higher and lower average precision with linguistics enabled and disabled) had a significance
level of less than 1%.

Table 5 summarizes the percentage increases in the precision scores using the recommended
VECTOR_GENERATOR setting compared to disabling linguistics. It appears that German and Dutch are the
biggest beneficiaries of linguistic expansion. The percentage changes for French and Italian were generally
larger than for Spanish, even though more topics were helped in Spanish:

Language | AvgP | P@5 P@l0 | P@20 | RecO Rec30 | Range
German +43% | +26% | +20% | +30% | +15% | +41% | 15-43%

Dutch +30% [ +27% [ +24% | ¥25% | +20% | +27% | 20-30%
French +18% | +11% | +13% | +10% | +11% | +17% 10-18%
Italian +16% [ +5% +13% | +15% | +5% +17% | 5-17%

Spanish +12% | +12% | +10% | +10% | +9% +9% 9-12%
English +12% | +8% +7% +7% +6% +18% | 6-18%

Table 5: Percentage Increase from Linguistic Expansion, Descending Order by Average Precision

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 9 of 10



References
[1] Cross-Language Evaluation Forum web site. http://www.clef-campaign.org/

[2] Martin Braschler. CLEF 2000 Result Overview. Slides of presentation at CLEF 2000 Workshop.
http://www.iei.pi.cnr.it/ DELOS/CLEF/CLEF _OVE.pdf

[3] Andrew Hodgson. Converting the Fulcrum Search Engine to Unicode. In Sixteenth International Unicode
Conference, Amsterdam, The Netherlands, March 2000.

[4] S.E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford. (City University.) Okapi at
TREC-3. In D.K. Harman, editor, Overview of the Third Text REtrieval Conference (TREC-3). NIST Special
Publication 500-226. http://trec.nist.gov/pubs/trec3/t3_proceedings.html

[5] Amit Singhal, John Choi, Donald Hindle, David Lewis and Fernando Pereira. AT&T at TREC-7. In E.M.
Voorhees and D.K. Harman, editors, Proceedings of the Seventh Text REtrieval Conference (TREC-7). NIST
Special Publication 500-242. http://trec.nist.gov/pubs/trec7/t7_proceedings.html

[6] Stephen Tomlinson and Tom Blackwell. Hummingbird’s Fulcrum SearchServer at TREC-9. To appear in
E.M. Voorhees and D.K. Harman, editors, Proceedings of the Ninth Text REtrieval Conference (TREC-9).
NIST Special Publication 500-xxx. http://trec.nist.gov/pubs/trec9/t9_proceedings.html

Hummingbird, Fulcrum, SearchServer, SearchSQL and Intuitive Searching are the intellectual property of
Hummingbird Ltd. All other company and product names are trademarks of their respective owners.

Hummingbird's Fulcrum SearchServer at CLEF 2001: Notebook Paper — Page 10 of 10



