
Role Modelling: the ASSO Perspective

Donatella Castelli, Elvira Locuratolo

Istituto di Elaborazione dell'Informazione

Consiglio Nazionale delle Ricerche

Via S. Maria, 46

Pisa, Italy

e-mail: castelli@iei.pi.cnr.it, locuratolo@iei.pi.cnr.it

Abstract

This paper shows how a conceptual representation and an e�cient han-

dling of roles can be obtained coupling semantic and object models.

1 Introduction

Role modelling is currently an important research topic in the database area since

the object-oriented models, which are employed by the more advanced database

systems, display serious shortcomings when they are used for this purpose.

This paper discusses the modelling and handling of roles from the perspective

provided within the formal database design methodology ASSO.

ASSO supports the development of systems based on two di�erent repre-

sentation of the same database: a conceptual schema, modelled in terms of a

semantic data model enriched with behavioral aspects, and an object-oriented

schema which is a correct and e�cient implementation of the previous schema.

A schema transformation method, called partitioning method, and a formal the-

ory of re�nement guide the de�nition of the correct object-oriented schema from

the conceptual schema. As the two schemas are actually only di�erent represen-

tations of the same abstract model, the applications can refer to the high-level

and free from implementational details conceptual schema and, at the same time,

can be supported by an e�cient object system.

This paper discusses how the above approach contributes to the achievement

of an high-level role modelling and an e�cient role handling. In particular the

paper shows that:

� it allows to represent easily and formally roles, role acquisition and role

dropping;

� it permits to model in a common framework the static and behavioral prop-

erties which characterize roles;

1

� it o�ers a context in which constraints on roles can be represented easily

and their correctness with respect to the given behavioral speci�cation can

be proved;

� it provides an e�cient handling of roles on a classical object system.

The rest of the paper is organized as follows: Section 2 introduces the concept

of role and discusses how some of the most frequently used database models

represent them. Section 3 presents the ASSO perspective. In particular, it shows

how role modelling is approached within this context and justi�es the correctness

of the approach. Conclusions are given in Section 4.

2 Roles and Roles modelling

This section briey illustrates the concept of role and review the mechanisms

which some of the most frequently used database models o�er to represent it.

In describing an application we often use the expression \the entity plays the

role". In order to explain the meaning of this expression we �rst need to introduce

the concept of entity.

An entity is a primitive concept. A set of static and behavioral properties of

interest which change through time is usually associated with it. Among these

properties there is a property which never changes: the identity.

A role can be de�ned as a set of properties which is interesting to distinguish

as a whole. These properties, which regard both the static and the behavioral

aspects of an entity, can be shared among di�erent roles.

\The entity plays a role" means that the entity has, among its properties,

those which characterize the role.

An entity may play more than one role simultaneously. This means that its

properties comprise the properties associated to all the roles it plays. There are,

however, roles which are incompatible, in this case an entity cannot play them

simultaneously. For example a person cannot be at the same time married and

single.

We have said before that an entity can acquire and drop properties through

time. This can be rephrased by saying that through time the entity acquires

and drops roles. Often role changes are allowed only under certain assumptions.

For example, a single gets married under the assumption that he/she is at least

sixteen years old. Moreover, not all role changes are always allowed. For example,

a single can get married but the viceversa is not possible, or when a person gets

married there must be another person, the spouse, that makes simultaneously a

similar role changing. The sequences of role changes which an entity perform are

usually called role evolutions.

Let us now briey examine how the most important classes of database models

represent the concepts of role and role evolution.

2

Let us begin considering Semantic Data Models(SDM)[7].

The main mechanism of SDM models is the class. A class is a sets of elements

sharing common attributes. Classes can be related by is-a relationships. If C1 and

C2 are classes, then C1 is-a C2 means that C2 has associated all the attributes of

C1 and, possibly, additional ones. C2 thus comprises those elements of C1 which

enjoy the additional properties. C2 is called a subclass of C1. As a class can have

several subclasses, then an entity belongs to all the classes which describe the

properties that it enjoys.

Primitive operations are provided to insert and remove elements from a class.

These operations are de�ned appropriately to preserve the inherent constraints

of the model. For example, the removal of an element from a class implies an

automatic removal of that element from the subclasses.

SDM models usually represent a role through a class which has attributes that

describes the static properties associated with the role. Due to the characteristic

of the model, the behavioral properties of a role cannot be represented.

An entity plays a role when it belongs to the corresponding class. The acqui-

sition of a role is thus simply represented by inserting the entity into the class

which models that role. Viceversa, the drop of a role is modelled by removing

the entity from the appropriate class.

The object-oriented models[13, 1] which are currently very frequently used

as database models, are based on an object mechanism which de�nes a set of

attributes and a set of operations on these attributes. A class mechanism is also

provided which collects all the objects which have exactly the same attributes

and operations, i.e. the same properties. As a consequence of this de�nition

an object always belongs to a single class. Classes can be related by a subclass

relationships. If C1 and C2 are classes, then C2 is a subclass of C1 means that the

objects of C2 have all the properties of the objects in C1 plus, possibly, additional

properties.

Operations to create a new object as element of a class and to remove it from

the class are given.

In an object-oriented model a class usually is used to represents set of roles.

The class attributes and operations model the static and behavioral properties

associated with the roles they represents. An entity playing a set of roles is

represented by an object which belongs to the class which models that set of

roles. The acquisition and dropping of a role is modelled by removing the object

from the current class and by inserting this object into the class which represent

the new set of roles. The inherent constraint which states that an object always

belongs to a single class is thus never violated.

The representation of any possible role acquisition with an object model re-

quires the introduction of a class for each possible combination of roles. For

example, in order to be able to represent all the role acquisitions which can occur

when there are three roles: person, student and employee four classes must be in-

troduced: the class of people which are neither students nor employees, the class

of students which are not employees, the class of employees which are not stu-

3

dents and the class of those people which are both students and employees. The

last class must be introduced even if the properties of employee and student have

been completely described by the other classes. A widely recognized drawback of

the object-oriented models is that the large number of classes required to model

each possible combination of roles renders the schemas very complex. Sometimes

this problem is handled by de�ning a schema in which not all the possible com-

binations of roles are represented. In several case this solution, however, is not

acceptable since the resulting schema is simpler but it is not exible, i.e. it must

be modi�ed every time a change in the applications requires the representation

of a set of roles not previously taken into account.

In order to enhance the naturalness in modelling role evolutions, in the last

few years several models which introduce an appropriate mechanism to represent

roles have been proposed[3, 10, 11, 12, 9, 4]. These models introduce an object

mechanism to represent entities. In some models an object can be created with no

roles since this object mechanism is independent from the one which represents

roles. On the contrary, there are other models in which an object can always

created with a speci�c role since the object and role mechanisms are strictly

related.

The role mechanism de�nes a set of attributes and operations that an object

can exhibits during a period of time. Often an is-a relationship between roles is

also de�ned. A role R1 is-a a role R2 means that the latter describes a superset

of the attributes and operations described by the previous one. This does not

necessarily mean neither that the attributes in common can assume exactly the

same values and that the operations in common describes the same behavior. It

simply expresses that they have the same name and the same type.

As objects can play several roles simultaneously, the only restriction on the

assignment of a role is dictated by the preservation of the integrity constraints, if

any. With respect to this point let us note that only few models allow to express

constraints on roles.

Primitive operations are given to assign and to drop a role. The dropping

of a role sometimes is not allowed since it poses some problems in maintaining

the database consistency. When an object drops a role it must also drops all its

subroles. In addition, in order not to cause dangling references, the dropping can

be done only when the object which loses the role is not referenced with that role.

Summarizing the above review we can observe that:

� SDM models represent naturally role acquisition and role dropping. How-

ever, they allow to model only the static properties associated with a role

and they do not provide any integrated context to specify integrity con-

straints.

� The object oriented-models display shortcomings in the representation of

role changing since the object-oriented schemas are either complex or not

exible. In addition, again, it is not always clear if and how integrity

constraints can be represented.

4

� The models which introduce a role mechanism o�er a more convenient way

of modelling roles and role changing. In most of the cases, however, they do

not provide an integrated framework to represent all the aspects illustrated

at the beginning of this section. For example, constraints on simultaneous

role playing and role evolutions, and assumptions on role changing are rarely

treated.

In this section we have discussed how the representational mechanisms of the

di�erent database models contribute to the achievement of a conceptual repre-

sentation of roles. Within the database context, however, this is not the only

important quality requirement for a database model since much emphasis is also

posed on to what extent a model can be supported e�ciently by a database sys-

tem. Regarding this point, it is well known that SDM models have never been

implemented e�ciently. On the contrary, the object-oriented models have been

recognized to be more suitable to support e�cient systems.

In rest of the paper we will see how the solution supported by ASSO favors

the achievement of both the conceptualness and e�ciency quality requirements.

3 The ASSO Perspective

In this section we discuss role modelling from the ASSO perspective.

In de�ning an appropriate model for database applications, one is always

faced with two conicting quality requirements: the model must be conceptual,

since this simpli�es the writing of the applications and the model must be simple

enough to support an e�cient implementation.

As it results from the review given in the previous section, the database models

tend to prioritize one of the two requirements. As a consequence, either the

applications can be written easily or they are handled e�ciently.

ASSO supports the development of systems based on two di�erent represen-

tations of the database schema: one which is visible to the applications and the

other one which is maintained by the database system. The former is an high level

representation whereas the latter an implementational representation. A correct

transformation links these two representations, i.e, the behaviour that is exibited

by the object model is in accordance with that prescribed by an extended seman-

tic model. Under this perspective, the quality requirements for a database model

listed above become: the model seen by the applications should permit a con-

ceptual representation of the database while the model used at implementational

level should permit an e�cient handling of it.

In order to satisfy these quality requirements ASSO uses a semantic data

model, appropriately extended to represent also integrity constraints and behav-

ior, and an object-oriented model.

In the next sections we will see how, with respect to the modellization of roles,

these models, when used as suggested by ASSO, permit the achievement of the

above database system quality requirements.

5

 CS Schema

OO Schema AM Schema

AM stepwise
refinement

AM Schema

Partitioning
Method

Figure 1: ASSO

Before discussing this point let us briey introduce ASSO.

3.1 The methodology

ASSO[6] has been de�ned integrating the Partitioning Method [8] introduced

into the database within the formal software development method B-Method[2]

B-Method covers all the software development phases from the speci�cation to

the implementation. It is based on a single formal model, Abstract Machine,

which permits to describe both static and behavioral aspects of systems using

the same formal framework. A set of tools is associated with this method to help

the designer during all the software development phases.

ASSO consists of two stages: conceptual design, which focuses on the construc-

tion of the conceptual schema, i.e. the speci�cation of the database structure and

transactions and re�nement, which is a formal correct transformation from the

conceptual schema to the logical schema (see Figure 1).

The conceptual schema is described by two equivalent models: the former,

called Conceptual Schema, is a semantic data model enriched with modelling

mechanisms to represent both integrity constraints and transaction, and the latter

is a particular Abstract Machine. The equivalence of these models guarantees that

the Abstract Machine theory can be applied to the Conceptual Schema. First

order formulas express the consistency the whole speci�cation.

The re�nement stage consists of two phases: data re�nement and transac-

tion re�nement. The data re�nement[8] transforms step-by-step the conceptual

schema into a schema with features of object models. At each step, a new schema

equivalent to the previous one is de�ned. This guarantees both the correctness

of this phase and the compatibility of the resulting schema with the Abstract

Machine Model.

The transaction re�nement phase is a particular B-re�nement. It de�nes a

sequence of schema transformations from the output of the data re�nement to

6

a formal schema which can be translated easily into a schema supported by an

object-oriented system. At each step, the database designer proposes a new

schema which reformulates the behavioral de�nition of the previous schema and

proves �rst order formulas to establish the correctness of the step. By exploiting

transitivity, also the correctness of this re�nement phase is guaranteed.

As a consequence of the re�nement correctness, if the conceptual schema has

been proved to be consistent also the object oriented schema is consistent.

3.2 Conceptual representation of roles

Conceptual Schema[5] is formal model which integrates representational mecha-

nisms of semantic data models with appropriate mechanisms to represent integrity

constraints and behavior. The main mechanisms of this model are: abstract sets,

classes, constraints and transactions.

An abstract set, denoted by an identi�er written in capitals, is a set made of

distinguishable elements which have no internal structure.

A class is a modelling mechanism similar to a semantic data model class. It

consists of a both a variable which maintains the class extension, and a set of

variables, one for each attribute, that maintain, for each member of the class, the

value of the corresponding attribute.

A class de�ned by is-a relationship is a class whose extension is included in

the extension of the parent class and for which additional attributes are given.

Integrity constraints are �rst order formulas over the class variables. They

express properties which must be satis�ed in every database state.

A transaction is a transformation over the database state which is de�ned

by the classes of the schema. A transaction speci�es, for each state before, i.e.

for each possible con�guration of values of the class variables, the states after,

i.e. new possible values for these variables. Preconditions, which express the

assumptions under which the state transformation described is meaningful, are

included in the transaction mechanism.

CS transactions are built by means of a basic operator upd and a set of trans-

action constructors. The basic operator speci�es a total and deterministic update

of the class variables which preserves the class and is-a inherent constraints. The

transaction constructors, which for brevity will not be discussed here, allow to

combine transactions to express non-deterministic, preconditioned and partial

state transformations.

Let us now illustrate by means of an example how roles can be modelled using

the representational mechanisms illustrated above.

The example describes an application context in which entities can play the

roles person, employee and student. When an entity plays the role person a

static property age and a behavioral property which describes that a person can

increment his age by one are associated with it. When an entity plays the role

student it has the same properties of the role person. Finally, when an entity

7

conceptual schema

example

classes

class person of PEOPLE with (age: N)

class employee is-a people with (company: N)

class student is-a people

constraints

8 e � (e 2 employee) age(e) � 16)

initialization

people, age, employee, company, student:= ;, ;, ;, ;, ;

transactions

one.more(p) =

upd(age(p) = age(p)+1)

hire(p,c) =

pre age(p) � 16

then upd(employee = employee [fpg, company = company [f(p,c)g)

end

�re(e) =

upd(employee = employee - feg)

enrol(p) =

upd(student = student [fpg)

end

Figure 2: An Example

8

plays the role employee, it has associated the properties of the role person and

an additional static property which expresses the name of its company. A person

can become an employee but only if he is older than sixteen. He can also enroll

as student. Finally, an employee can be �red i.e. it can lose this role.

Figure 2 shows a CS conceptual schema which represents the above informal

speci�cation1.

Entities are represented as elements of abstract sets. The elements of this set

model quite naturally entities with a proper identity. The abstract set PEOPLE,

for example, represents the entities that can acquire the roles person, employee

and student.

A role is represented through a class that represent the static properties as-

sociated to roles, and a set of transactions that represent the behavioral ones.

The role person is modelled by means of the class person and the transaction

one.more(p). The inherent constraints which de�ne the class person express that

only the elements of the abstract set PEOPLE can play this role. In addition,

they represent that the static property age is de�ned for each element which

belongs to this class. The transaction one.more(p), where p is assumed to be a

person, speci�es that p can have its property age incremented by one.

The roles employee and student, which share properties with the role person,

have been modelled by exploiting the is-a relationship between classes. The

classes which model these roles have been introduced as subclasses of the class

person. The attribute company, speci�ed in the de�nition of the employee class

is a property which distinguish the employee role from the person one.

An entity playing a role is modelled by an element of an abstract set which

belongs to the extension of the class that represent that role. Role acquisition and

dropping are thus represented by means of transactions which add and remove

elements from classes.

In our example, we have modelled the acquisition and dropping of the role

employee and the acquisition of the role student, respectively, with the transac-

tions hire(p,c), �re(e) and enrol(p). The preconditions in the transaction hire(p,

c) express that an entity can acquire the role employee only if it is older that

sixteen.

The modellization given in the example permits an entity to play all the three

roles simultaneously. It would have also been possible, however, to express the

incompatibility among roles. This could have been done by adding appropriate

integrity constraints. In order to avoid, for example, the simultaneous playing of

the roles employee and student we should have added to the following integrity

constraint: employee \ student = ;.

In the example there is no constraint on the possible sequences of role chang-

ing. At the current state CS does not comprise yet mechanisms to represent this

kind of constraints. We are currently investigating the possibility of expressing

1The expression a << jb, where a is a is a set and b is a relation, denotes the relation formed

from b by keeping only those pairs where the �rst element is in the complement of a.

9

them relying �rst order formulas which express conditions between the state be-

fore and after the transaction execution. The following are examples of these

kind of formulas.

8 e � (e 2 employee) e 62 student0)

8 e � (e 2 employee) : (e 2 student0 ^ e 2 employee0))

In the above formulas a decorated variable denotes the value of the variable

after the execution of the transaction. The �rst constraint expresses that no entity

which has the role employee can acquire the role student. The second constraint

speci�es that no entity which has the role employee can at maintains this role

and, at the same time, acquire the role student.

Until now we have discussed how the representational mechanisms of a seman-

tic data model, appropriately extended with mechanisms able to express integrity

constraints and behavior, allow to represent roles at conceptual level.

As it has already been explained in the introduction to Section 3, CS model

corresponds to a particular subset of the Abstract Machine model and thus it

has an axiomatic semantics. This means that both static and dynamic aspects

of roles can be represented formally and proofs that expected properties of the

speci�cation are met can be done. In particular, it is possible to prove that

transactions always preserve the integrity constraints.

This aspect, other than contributing highly to the validation of the speci�ca-

tion, o�ers again a di�erent perspective in which representational problems which

arise in other proposals vanish. An example is the dropping of a role. In several

models the dropping of a role is considered a problematic state change since it

can cause dangling references, i.e. it may happen that an object loses a role when

it is still referenced with that role by another object. At running time this can

cause errors. In our context this situation can never occur since the proof of the

schema consistency ensures that no transaction will never violate the integrity

constraints.

4 A correct schema transformation

In the previous section the suitability of the Conceptual Schema model in rep-

resenting roles has been discussed. This model, however, when evaluated with

respect to the features which permit an e�cient handling of roles su�ers of the

same drawbacks of SDM. In order to overcome these drawbacks, ASSO provides

a correctness preserving re�nement that transforms the conceptual schema into

a schema which can be supported by an object model. This transformation is

the key which allows the coexistence of the two schemas. The rest of this section

describes the re�nement stage.

ASSO re�nement consists of two phases: data re�nement and transaction

re�nement.

The data re�nement is based on an algorithm, called Partitioning Algorithm[8]

10

conceptual schema

exemple

classes

class person of PEOPLE with (age: N)

class employee is-a person with (company: N)

constraints

8 e � (e 2 employee) age(e) � 16)

initialization

person, age, employee, company = ;, ;, ;, ;

transactions

�re(e) =

upd (employee = employee - feg)

end

Figure 3: A conceptual schema

which transforms the static component of the conceptual schema into a data

model in which each object belongs to one and only one class. This phase consists

in successive decompositions of the conceptual schema state until a new data

model which encloses all the class intersections is obtained. A reformulation of

the transactions is also done to render them suitable to work on the new model.

The data re�nement is performed automatically.

The conceptual schema and the schema resulting from data re�nement are two

equivalent models, i.e., they specify the same database. However, the handling

of the data structures provided by the new representation can be done more

e�ciently.

The transaction re�nement is a particular B re�nement. It consists in reducing

the transaction non determinism while enlarging the pre-condition until a model

which can be easily translated into an object programming language is obtained.

The transaction re�nement is a stepwise approach. At each step, �rst order

formulas are proved to guarantee the correctnees.

As an example of re�nement, let us consider the conceptual schema of Fig. 3.

In this schema, the �re transaction is a basic operation and thus the ASSO

re�nement reduces only to data re�nement. From the Partitioning Algorithm the

following data re�nement relations which link the primed variables of the object

schema to those of the conceptual schema can be obtained:

person0 = person - employee

11

employee
0 = employee

age
0

p
= (person - employee) <+ age

age
0

e
= employee <+ age

company
0 = company

the person0 variable is de�ned as the complement of the set person with respect

to the set employee whereas age
0

p
and age

0

e
are the restrictions to the subsets

person
0 and employee

0 respectively of the function age.

By applying the above data re�nement relations to the following inherent

constraints

person � PEOPLE

age 2 person �! N

employee � person

company 2 employee �! COMPANY

of the is-a hierarchy speci�ed by the class constructs in Fig. 3, the following set

of properties which de�ne the object schema is obtained:

person0
� PEOPLE

age
0

p
2 person

0
�! N

employee
0
� PEOPLE

age
0

e
2 employee

0
�! N

company
0
2 employee

0
�! COMPANY

person
0
\ employee

0 = ;

The object schema in Fig.4 is obtained by reformulating the other components

of the conceptual schema.

In order to complete this section, let us evidence that the data re�nement

is particularly signi�cant when the is-a hierarchy of the conceptual schema state

has more then one leaf. In this case, no object model permit the extensions of the

two leaves to be not disjoint thus reducing the exibility in specifying the chances

occurring in the real life; moreover to satisfy the above constraint, if an employee

becomes a student this employee must be removed from the class student and a

new class student-employee must be created.

5 Conclusions

This paper has discussed role modelling within the context provided by the for-

mal database design methodology ASSO. It has illustrated how, changing the

approach to the database schema development, a conceptual modelling and an

e�cient handling of roles can be obtained employing semantic and object models.

12

conceptual schema

example

classes

class person
0
of PEOPLE with (age0

p
: N)

class employee
0
of PEOPLE with (age

0

e
: N, company

0: N)

constraints

8 e � (e 2 employee
0) age

0

e
� 16)

initialization

person
0
, age

0

p
, employee

0
, age

0

e
, company

0
= ;, ;, ;, ;, ;

transactions

�re(e) =

upd (employee
0
= employee

0 - feg)

end

Figure 4: An object schema

Within the introduced framework, work can still be done to improve both the

conceptual modelling and the handling of roles . As far as the �rst aspect, we are

currently investigating both the problem of associating a behavioral description

to the class mechanism and the problem of de�ning an appropriate extension of

the is-a relation to treat also the inheritance of behavior. This would allow to

treat the modelling of the static and behavioral properties associated to roles in

an homogeneous way.

As far as the e�cient handling of roles, we are exploring the possibility of

de�ning a set of equivalence preserving transformations which can be applied

both before and after the application of the partitioning method. These trans-

formations, guided by the database designer, should reformulate the schema in a

form suitable both to reduce the complexity of the partitioning algorithm and to

favor a more e�cient search and retrieval of information.

References

[1] Sege Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley Publishing Company, 1995.

[2] Jean-Raimond Abrial. Assigning Meanings to Programs. manuscript, 1993.

[3] Antonio Albano, Roberto Bergamini, Giorgio Ghelli, and Renzo Orsini. An

Object Data Model with Roles. In VLDB Conference, pages 39{51, 1993.

13

[4] Constantin Arapis. Specifying Objcet Life-Cicles, volume Object Manage-

ment, pages 197{225. Centre Universitaire d'Informatic, 1994.

[5] Donatella Castelli and Elvira Locuratolo. A formal notation for conceptual

schema speci�cations. In Information Modelling and Knowledge Bases V,

pages 258{275, 1993.

[6] Donatella Castelli and Elvira Locuratolo. Asso: A Formal Database Design

Methodology. In Information Modelling and Knowledge Bases VI, Jul 1994.

[7] Richard Hull and Roger King. Semantic database modelling: Survey, appli-

cations and research issues. ACM Computing Surveys, 19(3):201{259, 1987.

[8] Elvira Locuratolo and Fausto Rabitti. Conceptual Classes and System

Classes in Object Databases. Acta Informatica, to appear, 1994.

[9] Barbara Pernici. Objcets with Roles Life-Cicles. In IEEE-ACM Conference

on O�ce Information Systems, 1990.

[10] Joel Richardson and Peter Schwarz. Aspects: Extending Objects to Supp-

port Multiple, Independet Roles. In ACM SIGMOD Conference, pages 298{

307, 1991.

[11] Edward Sciore. Object Specialization. ACM Transactions on Information

Systems, 7(2):103{122, 1989.

[12] Roel Wieringa, Wiebren de Jonge, and Paul Spruit. Roles and dynamic sub-

classes: a modal logic approach. Technical report, Faculty of Mathematics

and Computer Science, Vrije Universiteit, Amsterdam, 1994.

[13] Kim Won and et. al. Integrating an Object-Oriented programming system

with a database system. In OOPSALA, pages 142{152, 1988.

14

