
Querying The Software Information Base
(Extended Abstract)

Gerd Hillebrand� Polivios Klimathianakisy

1 Introduction

The Software Information Base (SIB) [1] was developed at FORTH as a repository system for re-usable

software components. Originally intended to support the development of very large software systems within

the ESPRIT ITHACA project, it has since been adapted to other application domains and in its current

version (known as the Semantic Index System) provides a general tool for documenting and indexing large

collections of interrelated heterogeneous data such as engineering designs, museum collections, organograms,

etc.

The SIB consists of a knowledge-base component built upon the TELOS knowledge representation lan-

guage [5] and a collection of user and application interfaces, among them a TELOS parser, a graphical

browser, static analyzers for various common programming languages, an interface to relational DBMS, and

others. Information is entered into the system either automatically, e.g. by loading it from a relational

database or by static analysis of a program module, or manually by means of a forms-based entry facility.

Once the data is in the system, the user may browse it using the graphical interface or run a set of certain

pre-de�ned queries against it.

In this paper, we present the design of an ad-hoc query facility for the SIB, which allows the user to

write queries in a high-level, SQL-style language and have the system execute them. Our goal was to build

a query language that was close to existing relational DB languages, su�ciently powerful to express fairly

sophisticated queries, and easily optimizable. A �rst version of the query language has now been speci�ed,

and implementation of the query processor is under way.

2 Telos

The data model of the SIB is that of TELOS [5]. (In fact, a simpli�ed version of TELOS without temporal

assertions is used.) A complete axiomatization of the TELOS semantics is given in [3]. Informally, there are

two kinds of objects in TELOS: individuals, which model real-world entities, and attributes, which model

binary relationships between them. Both are treated uniformly by the language. Objects are organized

along three dimensions: attribution (linking objects via attributes), classi�cation (\instance-of" links) and

generalization (\isa" links). TELOS provides for an in�nite instantiation hierarchy and a weak typing of

attributes by means of attribute classes. Individuals and attributes are referred to by logical names, where the

name of an individual must be unique across the entire database and the name of an attribute must be unique

among all attributes of its source object (a more sophisticated scoping mechanism is under development).

A TELOS database may be viewed as a directed graph, where the nodes are labeled with names of

individuals and the edges are labeled with either attribute names or \instance-of" or \isa". Attributes may

themselves have attributes, so edges may originate from other edges, but this case is not very common in

practice. However, there are usually \isa" and \instance-of" links between attribute objects. The task of a

high-level query language is to allow easy and e�cient navigation of this graph.

�Contact author. Informatics Department, Rutherford Appleton Labs, Chilton, DIDCOT, Great Britain OX11 0QX. Phone:
+44 (235) 44-5710. Fax: +44 (235) 44-5831. Email: ggh@inf.rl.ac.uk. This work was supported by an HCM postdoctoral
fellowship and was done while the author was visiting FORTH.

y Institute of Computer Science, Foundation of Research and Technology - Hellas, P.O. Box 1385, Heraklion, Crete, Greece
71110. Email: polivios@ics.forth.gr.

1



3 Language Design and Implementation

After an analysis of the queries commonly used in various SIB applications, we identi�ed the following

requirements for a high-level query language:

� the language should be declarative in style, intuitive to use, and preferably close to some well-known

existing language, because of a large non-technical user base,

� navigation within the semantic net must be easy,

� queries using meta- and higher order classes and queries to the schema must be supported,

� transitive closure queries should be supported,

� queries should be parametrizable for re-use,

� the language must be amenable to optimization.

We decided to meet these requirements by choosing an SQL-style language augmented with path expressions a

la XSQL [4], transitive closure operators, and a compile-time name-to-sysid translation a la ConceptBase [2].

Queries are built from select-from-where expressions, where the predicates in the \where" clause are path

expressions of the form X:attr1:attr2: : : : :attrk[Y ]. In their most general form, path expressions are regular

expressions over attribute categories, meta-categories, etc., and variables. The semantics of the language is

nevertheless strictly �rst order. Literals occuring in path expressions are resolved into system identi�ers at

compile time using class information provided in the \from" clause, so that compiled queries refer only to

concrete objects and, for attribute objects, their source and destination objects. This kind of information

can be very e�ciently retrieved from the SIB because of the way objects are stored internally.

Queries are processed in the system as follows. A parser analyzes the SQL syntax, translates literals

into object identi�ers, and translates the query into a set of Datalog rules. The predicates in these rules

correspond to attribute class objects, which may be annotated with transitive closure operators (such closures

are handled by specialized operators already available in the SIB application interface). An optimizer then

rewrites these rules according to a simpli�ed magic-sets transformation. Finally, a code generator translates

the rewritten rules into a set of calls to the SIB application interface. At this point, the generated code may

be stored for later re-use (with possible substitutions for the system identi�ers appearing in the code), or

immediately executed.

References

[1] P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou. The Software Information Base: A Server for Reuse.

FORTH-ICS technical report, 1993.

[2] M. Jarke, S. Eherer, R. Gallersd�orfer, M. Jeusfeld, M. Staudt. ConceptBase - A Deductive Object Base Manager.
RWTH Aachen technical report TR 93-14, 1993.

[3] M. Jeusfeld. Change Control in Deductive Object Bases. Dissertation, Universit�at Passau, 1992.

[4] M. Kifer, W. Kim, Y. Sagiv. Querying Object-Oriented Databases. In Proceedings ACM SIGMOD Interna-

tional Conference on Management of Data, pp. 393{402, 1992.

[5] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. Telos: Representing Knowledge About Information
Systems. ACM Transactions on Information Systems 8 (1990), pp. 325{362.

2


