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Summary:  
The main objective of this group is to study the concept of uncertainty and its impact on 
actionable knowledge extraction. Our approach is to consider uncertainty in the context of data 
pipelines whose importance and complexity are greatly increasing nowadays. Good service 
provision by a data pipeline depends to a large extent on data quality, and uncertainty is one of 
the main factors influencing data quality. In this paper we focus on two important questions 
regarding uncertainty: 

• What are the sources of uncertainty?  

• How can uncertainty be managed? 
We attempt to answer these questions in four important areas of research, namely databases, 
signal processing, control theory and AI. 
 
 
 
 
 
 



 

 

 
 

1. Introduction  
Good service provision by a data pipeline depends to a large extent on data quality. The 
importance of data quality has been recognized beyond the field of data engineering and 
database management systems. For example, in signal processing and AI applications, high data 
quality standards are crucial to ensure robust predictive performance and responsible usage of 
automated decision making [1]. Uncertainty is one of the main factors influencing data quality.  
Perhaps the simplest way to understand the concept of uncertainty is to consider how 
population surveys are performed. Indeed, we are often interested in the characteristics of a 
population of “objects”, but usually we survey only a sample of the population rather than 
every object. This is timelier and more cost-effective and, if the sample is large enough and 
well designed, can lead to accurate statistics. Using a sample means that our statistics are 
usually accompanied by measures of uncertainty. Uncertainty relates to how the estimate 
might differ from the “true value” and these measures help users to understand the degree of 
confidence in the outputs. The measures of uncertainty include standard error, confidence 
interval, coefficient of variation and statistical significance [7].  
Uncertainty may appear in each stage of a data pipeline, namely during data collection at the 
sources; during integration and storage of the collected data following the rules of a data 
model; and during knowledge extraction from the stored data (see also Figure 1). 
Most systems today, and in particular signal processing systems, AI systems and database 
management systems, often operate in environments where uncertainty is a fundamental 
aspect. Representing and reasoning about knowledge in such uncertain domains is crucial for 
building robust and intelligent systems [8, 11].  
An uncertain domain refers to a field or environment where the information available is 
incomplete, ambiguous, noisy, or inherently unpredictable. Unlike deterministic domains 
where outcomes can be predicted with certainty given the inputs, uncertain domains require 
systems to handle and reason about uncertainty in a structured manner. The main 
characteristics of uncertain domains are the following:  
Incomplete Information: The system does not have access to all the data required to make a 
fully informed decision.  
Ambiguity: Information might be unclear or open to multiple interpretations.  
Noise: Data might be corrupted or imprecise due to measurement errors or external factors.  
Stochastic Processes: The environment might involve random processes or events. 
In this paper we focus on three areas of research, namely database systems, signal processing 
and AI, and we discuss two important questions regarding uncertainty in these areas: 

• What are the sources of uncertainty during data collection, data integration and knowledge 
extraction?  

• How can uncertainty be managed so as to extract actionable knowledge? 
 
 
 

 



 

 

2. Database systems  
 
Uncertainty in database systems has several causes, the most common of which are the 
following:  

 
Uncertainty at the data sources 

During data collection at the sources, data values may be erroneous or simply missing, due to 
incomplete data entry, equipment malfunctions, lost files, and many other reasons. In any 
dataset, there are usually some missing data. Incomplete datasets can break data pipelines and 
have devastating impact on downstream results when not detected. While a variety of 
approaches to impute missing values exist [13] comprehensive benchmarks comparing classical 
and modern imputation approaches under fair and realistic conditions are underrepresented [1].  

Uncertainty at the data model  

Integration of data collected at the sources follows a data model and the dominant model for 
databases today is the relational model. Following this model, a database consists of a set of 
tables where data values are inserted. The most common sources of uncertainty at model level 
are the following:  
(a) Missing values, where it is not possible to record a data value in a table. For example, in a 
table containing the attributes Employee, Salary and Maiden name, it is impossible to record the 
maiden name of a male employee (because a male employee has no maiden name). As a result, 
there is an empty cell in the table causing uncertainty during data processing. This is an example 
of missing value of the type “value does not exist”. However, there are other types of missing 
values as well, for example “value exists but is currently unknown” or “there is no information as 
to the existence or non-existence of the value”. The presence of any of these various types of 
missing values in the database causes uncertainty in data processing. 

(b) Integrity constraint violations, when the same key-value in a table is associated with two or 
more values in non-key columns of the table. For example, consider a table T(Emp, Mgr) in which 
Emp is the key.  In this example, there is a key dependency Emp→Mgr. If we have two tuples, (e, 

m) and (e, m’) in the table with mm’ then the table violates the key and this will cause 
uncertainty as to the semantics of the table.  

Uncertainty during knowledge extraction 

The main tool for knowledge extraction in a database management system is the query language.  
Knowledge is extracted from the database in the form of answers to queries. In order for this 
knowledge to be actionable, the query answers must contain no uncertainty. For example, 
consider a relational database with three tables, T1(Emp, Dep), T2(Dep, Mgr) and T3(Emp, Mgr), 
where the underlined attributes are the keys. Now, to find all employees and their managers one 

might ask the following relational algebra query: Q= Emp, Mgr(T1⋈T2)T3, where “⋈” stands for 
the join operation of the relational model [37]. The result of this query may violate the key 
dependency Emp→Mgr. This is due to an ambiguity of the relational model: key-dependencies 



 

 

are declared over the set of all attributes appearing in the database while database consistency 
is verified at table level. In other words, local satisfaction of integrity constraints at table level 
does not imply satisfaction of the integrity constraints by the database as a whole.  In our 
example, it is not clear whether an employee’s manager coincide with the manager of the 
employee’s department. A data table violating semantic constraints can break data pipelines and 
cause important damage in critical applications. Designing algorithms that “repair” such tables 
before their use is a hot research topic in the area of databases [2]. An approach to the problem 
of repairing tables with missing values and integrity constraint violations can be found in [3, 36], 
while a unifying framework for uncertainty, inconsistency and incompleteness is proposed in [40]. 

 
 

3. Signal processing 
 
Signal processing [22, 23] retrieves knowledge from spatial and/or time-series data that 
involves modifying, synthesizing, and analyzing signals, such as seismic signals, altimetry 
processing, images, sound, potential fields, and scientific measurements.  Signal processing is 
useful in various optimizations and recognitions, such as the detection of motifs [14], storage 
efficiency [15], transmission acceleration [16], distortion correction [17], object tracking [18], 
medical applications [19], sound/video processing [20], etc. However, the performance can be 
greatly impacted if there are high uncertainties [21]. Real-time systems, such as audio, video, 
sensor streams, and communication devices, can perform poorly if there are errors or 
information shortages in signal processing. Handling signal processing errors is crucial in 
improving the reliability and efficiency of many applications. 
 
Sources of Uncertainty  
There are various causes contributing to the uncertainty in signal processing, including data 
shortage, measurement or environmental error, coding, processing algorithms, editing, model 
reliability, or tabulating data. Some common sources of uncertainty in signal processing results 
can be caused by various types of noises or limitations of processing methods: 

• Environmental errors: acoustic or optical reflections, movements of objects, etc.   

• Measurement errors: electromagnetic interference, thermal noise, clock jitter, etc. 

• Quantization: finite resolution or precision of the system, etc. 

• Data shortage: lacking key data, information shortage in data, etc.  

• Model capacity: limitation of model or algorithm ability, insufficient parameter 
optimization, over-simplification of models, etc.  

• Computing resources: model limitations caused by computing resources, etc.  
One of the major causes of uncertainty in signal processing systems comes from numerical 
noises. Numerical errors can be in different forms. Some common types of errors include: 

• Random errors: Such as white noise or Gaussian noise, which have no correlation, no 
pattern, and vary unpredictably.  

• Systematic errors: Such as harmonic distortion or offset errors with a consistent 
pattern or bias. 



 

 

• Transient errors: Such as impulsive noise or glitches, which occurs sporadically or 
temporarily due to sudden changes in the system or environment. 

 
 
Uncertainty management  
Uncertainty management [23] is a key technology to improve and guarantee the quality of 
signal processing systems. The management methodologies can be classified as follows.  

• Noise management: suitable preprocessing and filtering, stochastic error estimation, 
inconsistency recognition, super-resolution, etc.  

• Multi-modal processing: required data identification, multi-modal data synthesis, 
sensor fusion, etc.  

• Model improvement: improving algorithms, stochastic or deep-learning models, data 
encoding, parameter optimization, etc.  

• Accuracy analysis: uncertainty/risk quantification in the application area, feedback 
from reality, etc.  

 
Uncertainty quantification  
Uncertainty quantification [35] refers to the process of identifying, characterizing, and 
measuring uncertainty in signal processing systems. It aims to model the sources of 
uncertainty and represent them mathematically. The key techniques for uncertainty 
quantification are categorized based on statistical, probabilistic, and learning-based methods, 
including the following: 

• Probabilistic & Bayesian Methods: These approaches model uncertainty explicitly 
using probability distributions; e.g. Bayesian Inference, Bayesian Model Averaging, 
Gaussian Processes, Monte Carlo Methods (MC, MCMC, SMC), and Hidden Markov 
Models & Variants. 

• Surrogate Modeling & Polynomial Methods: These methods approximate system 
behavior to reduce computational costs while quantifying uncertainty; e.g. 
Polynomial Chaos Expansion, Stochastic Collocation, Kriging (Gaussian Process 
Regression), Radial Basis Function Surrogates, and Sparse Grid Methods. 

• Interval, Set, & Evidence-Based Methods: These methods quantify uncertainty when 
probability distributions are unknown or hard to estimate; e.g. Interval Analysis, 
Dempster-Shafer Theory, Fuzzy Set Theory, and Convex Modeling & Robust 
Optimization. 

• Information-Theoretic & Entropy-Based Methods: These methods quantify 
uncertainty using information measures; e.g. Shannon Entropy & Mutual 
Information, Fisher Information, Kullback-Leibler Divergence, and Optimal Transport 
for Uncertainty Quantification. 

• Machine Learning & Data-Driven Methods: Used for complex, multi-modal data, 
these methods leverage deep learning and AI for uncertainty quantification; e.g. 
Deep Ensemble Methods, Bayesian Neural Networks, Variational Inference, and 
Adversarial Training for Uncertainty Quantification. 



 

 

• Hybrid & Domain-Specific Techniques: These techniques combine different strategies 
for robust uncertainty handling; e.g. Kalman Filter & Variants, Wavelet-Based 
Uncertainty Analysis, and Surrogate Models & Reduced Order Modeling. 

 
 
 
 
 

3. Control Theory 
 
Control theory provides a mathematical framework for regulating dynamical systems, ensuring stability, 
performance, and robustness in applications ranging from robotics and aerospace to industrial 
automation and economic systems [24]. It helps extract actionable knowledge from systems affected by 
uncertainties in modeling, measurements, and external disturbances, enabling reliable decision-making. 
Techniques such as robust, adaptive, and stochastic control allow systems to function effectively even 
with incomplete or imprecise information. As systems face new challenges – growing complexity [25], AI 
integration [26], and stricter safety requirements [27] – control theory continues to evolve to tackle them 
while ensuring reliable performance. 
 
Sources of uncertainties 
Control systems face three main types of uncertainties: 

• Model uncertainties: Occur when complex systems are simplified into mathematical models, 
leading to missing dynamics or inaccurate approximations 

• External uncertainties: Include disturbances from environmental factors, changing conditions, 
system parameter variations, or communication delays 

• Measurement uncertainties: Result from sensor noise, incomplete data, quantization errors, or 
sensor drift 

 
As systems become larger and more complex, and with the increasing integration of AI, additional 
uncertainty factors are becoming increasingly significant: 

• Large-scale systems: Complex interactions and computational challenges in interconnected 
systems 

• AI integration: Errors in training data, model limitations, and unpredictable AI behavior 
• Human interaction: Unpredictability from human behavior in semi-autonomous systems 

 
These uncertainties often interact, amplifying their effects and making it more challenging to extract 
actionable knowledge for reliable control strategies, especially in safety-critical applications where 
formal guarantees are required. 
 
Uncertainty management 
To handle these uncertainties, several approaches have been developed, including, but not limited to: 

• Robust control: Ensures stability and performance despite bounded uncertainties in system 
parameters and external disturbances 

• Adaptive control: Dynamically adjusts controller parameters in response to time-varying or 
initially unknown system properties 



 

 

• Stochastic control: Models uncertainties probabilistically to optimize decision-making under 
random disturbances 

 
With emerging challenges from larger systems and stricter safety requirements, these techniques are 
evolving to incorporate new tools such as machine learning while maintaining rigorous performance 
guarantees. These approaches help extract actionable knowledge from uncertain environments, 
enabling robust and adaptive decision-making. 

 
 

4. Generative AI 
 
Generative AI techniques, such as Generative Adversarial Networks (GANs), Variational 
Autoencoders (VAEs) [28, 29], and Large Language Models (LLMs) [30], have emerged as 
transformative tools for creating synthetic data [31]. These data are increasingly used in 
domains where real-world data are scarce, expensive, or fraught with privacy concerns—
examples include medical imaging [32], anomaly detection [33], and human activity recognition 
[34]. However, the use of synthetic data introduces new challenges in the extraction of 
actionable knowledge, stemming from the inherent uncertainty in the data's fidelity and 
representativeness. 
 
Sources of Uncertainty in Synthetic Data 
(a) Fidelity to Real Data: The synthetic data's realism and utility often depend on how well the 

generative models capture the distribution and nuances of the original data. This fidelity is 
influenced by: 

• Model Limitations: Insufficient model capacity or training data can lead to artifacts or 
biases. 

• Domain Variability: For example, synthetic Wi-Fi signal data used for activity recognition 
may fail to generalize across different environments without significant preprocessing. 

(b) Measurement Dependencies: When synthetic data represent physical phenomena (e.g., 
sensor outputs), the transformations required to ensure environment-independent features 
(e.g., vectorization) introduce additional layers of uncertainty. 

(c) Ambiguity in Reference Data: Domain knowledge or real data distributions, often used as 
benchmarks, may themselves be incomplete or imprecise. 

 
Quantification and Management of Uncertainty 
To extract actionable knowledge from synthetic data, it is essential to quantify and address 
uncertainty. The following approaches are pertinent: 
(a) Reference-Based Validation: Synthetic data can be evaluated against real-world 

benchmarks or domain-specific distributions. For instance: 

• Comparing statistical properties (e.g., means and variances). 

• Using domain-specific tools like vectorization for meaningful similarity 
measurements. 



 

 

(b) Stochastic Modeling: Estimating the uncertainty bounds of generated data using 
probabilistic methods can provide confidence levels for downstream applications.  

(c) Digital Twin Integration: In industrial and IoT applications, digital twins can help gauge 
discrepancies between simulated synthetic data and observed real-world data, offering a 
pathway to refine models. 

 
Challenges in Knowledge Extraction 
The unique challenges of extracting actionable knowledge from synthetic data include:  
(a) Feature Alignment: Transformations such as environment-independent feature extraction 

(e.g., using vectorization techniques akin to word2vec for time-series or spatial data) are 
necessary but complex. 

(b) Bias Propagation: Generative models trained on biased or incomplete datasets can 
propagate and even amplify these biases, impacting decision-making. 

(c) Robustness: Ensuring that models trained on synthetic data perform consistently under 
real-world conditions remains an open challenge. 

 
Research Directions and Implications 

• Domain-Specific Methods: Developing tailored techniques for synthetic data validation, 
such as leveraging control theory to design robust data correction algorithms. 

• Collaborative Validation: Integrating insights from multiple domains, such as databases, 
AI, and signal processing, to improve synthetic data quality. 

• Ethical and Practical Considerations: Addressing privacy and ethical implications, 
especially in sensitive applications like healthcare or surveillance. 

Generative AI holds immense promise for addressing data scarcity and enhancing analytical 
capabilities. However, systematically managing and mitigating uncertainty is essential to 
ensure that the knowledge derived from synthetic data is not only actionable but also 
trustworthy and robust. 
 
 

5. Conclusions 
 
In this paper, we have discussed the concept of uncertainty and its impact in four specific 
domains of high current interest: databases, signal processing, control theory and generative AI.  

Our analysis highlights that uncertainty is present at multiple levels within each of these 

domains: at the level of data sources, at the level of data modeling and finally at the level of 

knowledge extraction from data. Given that the effectiveness of a data pipeline heavily depends 

on data quality, and uncertainty is a key factor influencing this quality, further research is 

essential to mitigate its impact [38, 39].  
We therefore encourage the EU research funding agencies, as well as the funding bodies of the 
EU member states, and the Japan Science and Technology Agency to support research activities 

aiming to understand, quantify, and manage uncertainty. Advancing these efforts will enable 

more reliable knowledge extraction from uncertain data sources, ultimately enhancing the 

robustness of data-driven decision-making.  
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