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Summary:

The main objective of this group is to study the concept of uncertainty and its impact on
actionable knowledge extraction. Our approach is to consider uncertainty in the context of data
pipelines whose importance and complexity are greatly increasing nowadays. Good service
provision by a data pipeline depends to a large extent on data quality, and uncertainty is one of
the main factors influencing data quality. In this paper we focus on two important questions
regarding uncertainty:

e What are the sources of uncertainty?

e How can uncertainty be managed?

We attempt to answer these questions in four important areas of research, namely databases,
signal processing, control theory and Al.



1. Introduction
Good service provision by a data pipeline depends to a large extent on data quality. The
importance of data quality has been recognized beyond the field of data engineering and
database management systems. For example, in signal processing and Al applications, high data
quality standards are crucial to ensure robust predictive performance and responsible usage of
automated decision making [1]. Uncertainty is one of the main factors influencing data quality.
Perhaps the simplest way to understand the concept of uncertainty is to consider how
population surveys are performed. Indeed, we are often interested in the characteristics of a
population of “objects”, but usually we survey only a sample of the population rather than
every object. This is timelier and more cost-effective and, if the sample is large enough and
well designed, can lead to accurate statistics. Using a sample means that our statistics are
usually accompanied by measures of uncertainty. Uncertainty relates to how the estimate
might differ from the “true value” and these measures help users to understand the degree of
confidence in the outputs. The measures of uncertainty include standard error, confidence
interval, coefficient of variation and statistical significance [7].
Uncertainty may appear in each stage of a data pipeline, namely during data collection at the
sources; during integration and storage of the collected data following the rules of a data
model; and during knowledge extraction from the stored data (see also Figure 1).
Most systems today, and in particular signal processing systems, Al systems and database
management systems, often operate in environments where uncertainty is a fundamental
aspect. Representing and reasoning about knowledge in such uncertain domains is crucial for
building robust and intelligent systems [8, 11].
An uncertain domain refers to a field or environment where the information available is
incomplete, ambiguous, noisy, or inherently unpredictable. Unlike deterministic domains
where outcomes can be predicted with certainty given the inputs, uncertain domains require
systems to handle and reason about uncertainty in a structured manner. The main
characteristics of uncertain domains are the following:
Incomplete Information: The system does not have access to all the data required to make a
fully informed decision.
Ambiguity: Information might be unclear or open to multiple interpretations.
Noise: Data might be corrupted or imprecise due to measurement errors or external factors.
Stochastic Processes: The environment might involve random processes or events.
In this paper we focus on three areas of research, namely database systems, signal processing
and Al, and we discuss two important questions regarding uncertainty in these areas:
e What are the sources of uncertainty during data collection, data integration and knowledge
extraction?
e How can uncertainty be managed so as to extract actionable knowledge?



2. Database systems

Uncertainty in database systems has several causes, the most common of which are the
following:

Uncertainty at the data sources

During data collection at the sources, data values may be erroneous or simply missing, due to
incomplete data entry, equipment malfunctions, lost files, and many other reasons. In any
dataset, there are usually some missing data. Incomplete datasets can break data pipelines and
have devastating impact on downstream results when not detected. While a variety of
approaches to impute missing values exist [13] comprehensive benchmarks comparing classical
and modern imputation approaches under fair and realistic conditions are underrepresented [1].

Uncertainty at the data model

Integration of data collected at the sources follows a data model and the dominant model for
databases today is the relational model. Following this model, a database consists of a set of
tables where data values are inserted. The most common sources of uncertainty at model level
are the following:
(a) Missing values, where it is not possible to record a data value in a table. For example, in a
table containing the attributes Employee, Salary and Maiden name, it is impossible to record the
maiden name of a male employee (because a male employee has no maiden name). As a result,
there is an empty cell in the table causing uncertainty during data processing. This is an example
of missing value of the type “value does not exist”. However, there are other types of missing
values as well, for example “value exists but is currently unknown” or “there is no information as
to the existence or non-existence of the value”. The presence of any of these various types of
missing values in the database causes uncertainty in data processing.

(b) Integrity constraint violations, when the same key-value in a table is associated with two or
more values in non-key columns of the table. For example, consider a table T(Emp, Mgr) in which
Emp is the key. In this example, there is a key dependency Emp—>Mgr. If we have two tuples, (e,
m) and (e, m’) in the table with m=m’ then the table violates the key and this will cause
uncertainty as to the semantics of the table.

Uncertainty during knowledge extraction

The main tool for knowledge extraction in a database management system is the query language.
Knowledge is extracted from the database in the form of answers to queries. In order for this
knowledge to be actionable, the query answers must contain no uncertainty. For example,
consider a relational database with three tables, T1(Emp, Dep), T2(Dep, Mgr) and T3(Emp, Mgr),
where the underlined attributes are the keys. Now, to find all employees and their managers one
might ask the following relational algebra query: Q= Temp, Megr(T1XT2)UT3, where “x” stands for
the join operation of the relational model [37]. The result of this query may violate the key
dependency Emp—>Magr. This is due to an ambiguity of the relational model: key-dependencies



are declared over the set of all attributes appearing in the database while database consistency
is verified at table level. In other words, local satisfaction of integrity constraints at table level
does not imply satisfaction of the integrity constraints by the database as a whole. In our
example, it is not clear whether an employee’s manager coincide with the manager of the
employee’s department. A data table violating semantic constraints can break data pipelines and
cause important damage in critical applications. Designing algorithms that “repair” such tables
before their use is a hot research topic in the area of databases [2]. An approach to the problem
of repairing tables with missing values and integrity constraint violations can be found in [3, 36],
while a unifying framework for uncertainty, inconsistency and incompleteness is proposed in [40].

3. Signal processing

Signal processing [22, 23] retrieves knowledge from spatial and/or time-series data that
involves modifying, synthesizing, and analyzing signals, such as seismic signals, altimetry
processing, images, sound, potential fields, and scientific measurements. Signal processing is
useful in various optimizations and recognitions, such as the detection of motifs [14], storage
efficiency [15], transmission acceleration [16], distortion correction [17], object tracking [18],
medical applications [19], sound/video processing [20], etc. However, the performance can be
greatly impacted if there are high uncertainties [21]. Real-time systems, such as audio, video,
sensor streams, and communication devices, can perform poorly if there are errors or
information shortages in signal processing. Handling signal processing errors is crucial in
improving the reliability and efficiency of many applications.

Sources of Uncertainty
There are various causes contributing to the uncertainty in signal processing, including data
shortage, measurement or environmental error, coding, processing algorithms, editing, model
reliability, or tabulating data. Some common sources of uncertainty in signal processing results
can be caused by various types of noises or limitations of processing methods:
e Environmental errors: acoustic or optical reflections, movements of objects, etc.
e Measurement errors: electromagnetic interference, thermal noise, clock jitter, etc.
e Quantization: finite resolution or precision of the system, etc.
e Data shortage: lacking key data, information shortage in data, etc.
e Model capacity: limitation of model or algorithm ability, insufficient parameter
optimization, over-simplification of models, etc.
e Computing resources: model limitations caused by computing resources, etc.
One of the major causes of uncertainty in signal processing systems comes from numerical
noises. Numerical errors can be in different forms. Some common types of errors include:
e Random errors: Such as white noise or Gaussian noise, which have no correlation, no
pattern, and vary unpredictably.
e Systematic errors: Such as harmonic distortion or offset errors with a consistent
pattern or bias.



Transient errors: Such as impulsive noise or glitches, which occurs sporadically or
temporarily due to sudden changes in the system or environment.

Uncertainty management
Uncertainty management [23] is a key technology to improve and guarantee the quality of
signal processing systems. The management methodologies can be classified as follows.

Noise management: suitable preprocessing and filtering, stochastic error estimation,
inconsistency recognition, super-resolution, etc.

Multi-modal processing: required data identification, multi-modal data synthesis,
sensor fusion, etc.

Model improvement: improving algorithms, stochastic or deep-learning models, data
encoding, parameter optimization, etc.

Accuracy analysis: uncertainty/risk quantification in the application area, feedback
from reality, etc.

Uncertainty quantification

Uncertainty quantification [35] refers to the process of identifying, characterizing, and
measuring uncertainty in signal processing systems. It aims to model the sources of
uncertainty and represent them mathematically. The key techniques for uncertainty
guantification are categorized based on statistical, probabilistic, and learning-based methods,
including the following:

Probabilistic & Bayesian Methods: These approaches model uncertainty explicitly
using probability distributions; e.g. Bayesian Inference, Bayesian Model Averaging,
Gaussian Processes, Monte Carlo Methods (MC, MCMC, SMC), and Hidden Markov
Models & Variants.

Surrogate Modeling & Polynomial Methods: These methods approximate system
behavior to reduce computational costs while quantifying uncertainty; e.g.
Polynomial Chaos Expansion, Stochastic Collocation, Kriging (Gaussian Process
Regression), Radial Basis Function Surrogates, and Sparse Grid Methods.

Interval, Set, & Evidence-Based Methods: These methods quantify uncertainty when
probability distributions are unknown or hard to estimate; e.g. Interval Analysis,
Dempster-Shafer Theory, Fuzzy Set Theory, and Convex Modeling & Robust
Optimization.

Information-Theoretic & Entropy-Based Methods: These methods quantify
uncertainty using information measures; e.g. Shannon Entropy & Mutual
Information, Fisher Information, Kullback-Leibler Divergence, and Optimal Transport
for Uncertainty Quantification.

Machine Learning & Data-Driven Methods: Used for complex, multi-modal data,
these methods leverage deep learning and Al for uncertainty quantification; e.g.
Deep Ensemble Methods, Bayesian Neural Networks, Variational Inference, and
Adversarial Training for Uncertainty Quantification.



e Hybrid & Domain-Specific Techniques: These techniques combine different strategies
for robust uncertainty handling; e.g. Kalman Filter & Variants, Wavelet-Based
Uncertainty Analysis, and Surrogate Models & Reduced Order Modeling.

3. Control Theory

Control theory provides a mathematical framework for regulating dynamical systems, ensuring stability,
performance, and robustness in applications ranging from robotics and aerospace to industrial
automation and economic systems [24]. It helps extract actionable knowledge from systems affected by
uncertainties in modeling, measurements, and external disturbances, enabling reliable decision-making.
Techniques such as robust, adaptive, and stochastic control allow systems to function effectively even
with incomplete or imprecise information. As systems face new challenges — growing complexity [25], Al
integration [26], and stricter safety requirements [27] — control theory continues to evolve to tackle them
while ensuring reliable performance.

Sources of uncertainties
Control systems face three main types of uncertainties:
e Model uncertainties: Occur when complex systems are simplified into mathematical models,
leading to missing dynamics or inaccurate approximations
e External uncertainties: Include disturbances from environmental factors, changing conditions,
system parameter variations, or communication delays
e Measurement uncertainties: Result from sensor noise, incomplete data, quantization errors, or
sensor drift

As systems become larger and more complex, and with the increasing integration of Al, additional
uncertainty factors are becoming increasingly significant:
e large-scale systems: Complex interactions and computational challenges in interconnected
systems
e Alintegration: Errors in training data, model limitations, and unpredictable Al behavior
e Human interaction: Unpredictability from human behavior in semi-autonomous systems

These uncertainties often interact, amplifying their effects and making it more challenging to extract
actionable knowledge for reliable control strategies, especially in safety-critical applications where
formal guarantees are required.

Uncertainty management
To handle these uncertainties, several approaches have been developed, including, but not limited to:
e Robust control: Ensures stability and performance despite bounded uncertainties in system
parameters and external disturbances
e Adaptive control: Dynamically adjusts controller parameters in response to time-varying or
initially unknown system properties



e Stochastic control: Models uncertainties probabilistically to optimize decision-making under
random disturbances

With emerging challenges from larger systems and stricter safety requirements, these techniques are
evolving to incorporate new tools such as machine learning while maintaining rigorous performance
guarantees. These approaches help extract actionable knowledge from uncertain environments,
enabling robust and adaptive decision-making.

4. Generative Al

Generative Al techniques, such as Generative Adversarial Networks (GANs), Variational
Autoencoders (VAEs) [28, 29], and Large Language Models (LLMs) [30], have emerged as
transformative tools for creating synthetic data [31]. These data are increasingly used in
domains where real-world data are scarce, expensive, or fraught with privacy concerns—
examples include medical imaging [32], anomaly detection [33], and human activity recognition
[34]. However, the use of synthetic data introduces new challenges in the extraction of
actionable knowledge, stemming from the inherent uncertainty in the data's fidelity and
representativeness.

Sources of Uncertainty in Synthetic Data

(a) Fidelity to Real Data: The synthetic data's realism and utility often depend on how well the
generative models capture the distribution and nuances of the original data. This fidelity is
influenced by:

¢ Model Limitations: Insufficient model capacity or training data can lead to artifacts or
biases.

e Domain Variability: For example, synthetic Wi-Fi signal data used for activity recognition
may fail to generalize across different environments without significant preprocessing.

(b) Measurement Dependencies: When synthetic data represent physical phenomena (e.g.,
sensor outputs), the transformations required to ensure environment-independent features
(e.g., vectorization) introduce additional layers of uncertainty.

(c) Ambiguity in Reference Data: Domain knowledge or real data distributions, often used as
benchmarks, may themselves be incomplete or imprecise.

Quantification and Management of Uncertainty
To extract actionable knowledge from synthetic data, it is essential to quantify and address
uncertainty. The following approaches are pertinent:
(a) Reference-Based Validation: Synthetic data can be evaluated against real-world
benchmarks or domain-specific distributions. For instance:
e Comparing statistical properties (e.g., means and variances).
e Using domain-specific tools like vectorization for meaningful similarity
measurements.



(b) Stochastic Modeling: Estimating the uncertainty bounds of generated data using
probabilistic methods can provide confidence levels for downstream applications.

(c) Digital Twin Integration: In industrial and loT applications, digital twins can help gauge
discrepancies between simulated synthetic data and observed real-world data, offering a
pathway to refine models.

Challenges in Knowledge Extraction

The unique challenges of extracting actionable knowledge from synthetic data include:

(a) Feature Alignment: Transformations such as environment-independent feature extraction
(e.g., using vectorization techniques akin to word2vec for time-series or spatial data) are
necessary but complex.

(b) Bias Propagation: Generative models trained on biased or incomplete datasets can
propagate and even amplify these biases, impacting decision-making.

(c) Robustness: Ensuring that models trained on synthetic data perform consistently under
real-world conditions remains an open challenge.

Research Directions and Implications
o Domain-Specific Methods: Developing tailored techniques for synthetic data validation,
such as leveraging control theory to design robust data correction algorithms.
e Collaborative Validation: Integrating insights from multiple domains, such as databases,
Al, and signal processing, to improve synthetic data quality.
e Ethical and Practical Considerations: Addressing privacy and ethical implications,
especially in sensitive applications like healthcare or surveillance.
Generative Al holds immense promise for addressing data scarcity and enhancing analytical
capabilities. However, systematically managing and mitigating uncertainty is essential to
ensure that the knowledge derived from synthetic data is not only actionable but also
trustworthy and robust.

5. Conclusions

In this paper, we have discussed the concept of uncertainty and its impact in four specific
domains of high current interest: databases, signal processing, control theory and generative Al.
Our analysis highlights that uncertainty is present at multiple levels within each of these
domains: at the level of data sources, at the level of data modeling and finally at the level of
knowledge extraction from data. Given that the effectiveness of a data pipeline heavily depends
on data quality, and uncertainty is a key factor influencing this quality, further research is
essential to mitigate its impact [38, 39].

We therefore encourage the EU research funding agencies, as well as the funding bodies of the
EU member states, and the Japan Science and Technology Agency to support research activities
aiming to understand, quantify, and manage uncertainty. Advancing these efforts will enable
more reliable knowledge extraction from uncertain data sources, ultimately enhancing the
robustness of data—driven decision—making.
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