
FRONT PAGE

European Research Consortium for Informatics and Mathematics
www.ercim.org

C O N T E N T S

Joint ERCIM Actions 2

Special Theme:
Programming Language
Technologies 8

Research and Development 35

Technology Transfer 40

Events 45

In Brief 47

Number 36 January 1999

SPECIAL:

Programming Language
Technologies 8

Gerard van
Oortmerssen,
General Director of
CWI and President of ERCIM

Next Issue:

Networking Technologies

We live in interesting times. The way we work, communicate, trade,
educate, learn, entertain ourselves and the way in which countries
are governed is rapidly changing. Only five years ago few people

outside the academic world knew what the internet was. Now, millions are
surfing the web. Change is all around us, at an unprecedented pace. And this
is only the beginning! I believe that we are on the verge of a fundamental
breakthrough in human evolution.

It is evident that research is playing an important role in the process of change
that we see all around us. Research creates new opportunities. At the same

time, change itself generates new problems, requiring more research:

•the rapidly increasing number of users of the internet and the development
towards streaming media causes congestion, so we have to develop a high
bandwidth, reliable infrastructure

•the millennium bug has raised awareness of how dependent we are on all kinds
of automated systems; the rapidly increasing number of embedded systems in
all kinds of products is only aggravating the need for methods to check the
correctness of software systems

•among the millions of people using the internet, there will be some that will try to
use the internet for criminal purposes, so we have to find methods for monitoring
and preventing such unwanted behaviour, and develop countermeasures and
methods for secure payment systems and privacy protection

•existing legislation is not suitable to regulate and support the new kind of
transactions in the global community on internet.

And these are only a few of the new problems.

Europe has always played an important role in research in information and
communication technology and ERCIM now actively addresses problems such as
those mentioned above among many others. ERCIM, with its potential of six
thousand researchers, represents a major force on the European research scene.
ERCIM members have a joint ambition: to provide Europe with the best research
in information and communication technologies, contributing to the development
of the information society and to the creation of wealth and well-being.

With ERCIM we are building an infrastructure to facilitate information sharing and
co-operative work, thus creating a huge virtual laboratory. ERCIM members act as
national nodes, representing the ICT research community in their country, in a truly
European research network. ERCIM is an open network: its members co-operate
with universities and industry, not just in Europe, but all over the world. ERCIM
institutes co-operate in working groups and in joint projects, thus consistently
increasing our consortium’s internal cohesion. Moreover, ERCIM has a fellowship
programme and stimulates exchange of researchers among its members.

The European Union recognizes the signs of the time and is getting ready for the
challenges of the new information society with its 5th Framework Programme that
is about to start. ERCIM is prepared to meet the challenge!

ERCIM will
celebrate its 10th
anniversary with
a two days event
in Amsterdam,
4-5 November
1999. See
announcement
on page 3.

Gerard van Oortmerssen

CALL FOR PROPOSALS

Prospective
Reports
on Research
in Information
and Communi-
cation Science
and Technology
in Europe
On the occasion of its 10th anniversary
in 1999, ERCIM wishes to contribute
to develop a long-term vision on the
future of Information and
Communication Science and
Technology (ICST) research in Europe
and related fields, within, say, a five-
year horizon. This call is aimed at
encouraging European computer
scientists and applied mathematicians
are invited to write prospective reports.
These reports should emphasise such
issues as scientific challenges in
computer science and applied
mathematics, development of
interactions with other sciences, new
prospects of applications, job-creating
potentialities, identification of centres
of excellence in Europe and world-
w i d e .

ERCIM Working Groups and scientists
from ERCIMinstitutes are most welcome
to submit, but this call for proposals is
open to any European scientist.

Possible topics considered important by
ERCIM for these prospective reports
include the main scientific and
technological challenges of ICST (such
as high speed networking, distributed and
mobile computing, software engineering
and certification, computational
linguistics, co-operative work, intelligent
information retrieval, user interfaces for
all, computer vision and image
processing, multimedia and virtual
reality, optimisation, control and systems
theory, large-scale simulations, etc), the
economical and social impact of these

technologies (such as applications of
ICST in medicine, telecommunications,
transportation systems, environmental
modelling, virtual museums, education,
commerce, finance, etc), and also
questions concerning the ICST research
community and its future (such as:
relations of computer science with other
scientific disciplines, evolution of
computer science curriculae, etc).

Suggested Formats

1. A possible format consists in
organising a workshop bringing together
senior scientists from academia or applied
research institutes and industrial
companies (possibly also from health care
sector, governmental agencies, etc),
coming from at least four European
countries. A prospective report of 10 to
15 pages will be written up after the
workshop. If the proposal is selected, a
lump sum of 6 kECU will be granted by
ERCIM to cover the travels of the
participants and the cost of logistics
associated with the meeting. An extra sum
of 2 kECU will be allocated to the
scientist(s) in charge of writing the report,
after submission of an extended abstract
and of a summary of the workshop
d i s c u s s i o n s .

2. An alternative format may consist in
the sole writing-up of a prospective
report, by a senior European scientist (or
a small number of them). If the proposal
is selected, a travel budget (up to 2kECU)
will be granted by ERCIM. An extra sum
of 2 kECU will be allocated after
submission of an extended abstract of the
prospective reports.

Proposals

The proposals should contain:

• a one-page description of the field
covered by the expected prospective
report

• the CVs of the author(s) in charge of
writing the prospective reports, and a
brief description of their motivation and
achievements with respect to the
proposed prospective report

• for the workshop format, information
about the workshop (location and date,
hosting organisation, list of participants...)

• for the report format, a proposed travel
budget (up to 2 kECU)

• the complete address of the person in
charge of the proposal (with phone and
fax numbers, and E-mail address).

Deadlines

• proposals are to be sent to the
ERCIM Office before 31 January
1999

• workshops are to be held before 30
June 1999

• extended abstracts are to be sent to
the ERCIM Office before 15 July
1999

• final reports are to be sent to the
ERCIM Office by 30 August 1999.

Selection Committee

The selection process for selecting the
proposals will be conducted by a
committee of ERCIM institutes’
Directors: Morten King (DANIT),
Bernard Larrouturou (INRIA), Stelios
Orphanoudakis (FORTH), Peter Inzelt
(SZTAKI) and Albert Westwood (RAL).

Dissemination of the reports

The prospective reports, outcome of the
present Call, will be published by
ERCIM. This document will be available
from the ERCIM Office and advertised
in the 10th anniversary issue of the
ERCIM News. The reports will also be
available on the web site of ERCIM.

The best report(s) may also be presented
by the authors in the framework of the
events scheduled for the celebration of
ERCIM’s 10th anniversary 4-5
November 1999 in Amsterdam, for
which ERCIM strives to attract a broad
participation from within ERCIM as well
as from industry, European Commission
and national government bodies. A
decision on the reports to be presented
during the events will be based upon the
evaluation of the selection committee.

■
Please contact:

Bernard Larrouturou – ERCIM Manager
Tel: +33 1 3963 5303
E-mail: office@ercim.org

JOINT ERCIM ACTIONS

2

JOINT ERCIM ACTIONS

3

Matthias
Grossglauser
Cor Baayen
Award
Winner 1998
Swiss born Matthias Grossglauser is
the winner of the 1998 Cor Baayen
Award competition. The 5000 ECU
award was presented during the
ERCIM Meetings on the 5th of
November in Chilton, UK by the
ERCIM President, Gerard van
Oortmerssen. The Cor Baayen award
was created to honour the first
ERCIM President and is given each
year to the most promising young
researcher working in one of the
ERCIM institutes.

The work for which Grossglauser – an
EPFL-graduate – received the award was
carried out at INRIA Sophia Antipolis

under the guidance of Jean Bolot where
he was a member of the RODEO team.
He defended his thesis in spring 1998 on
the topic 'Control of Network Resources
over Multiple Time-Scales'. The topic is
clearly of major importance, with regards
to the ever increasing role played by
networks at the present time. He is a
researcher with a sizable publication list
and his work is of outstanding quality.
His research concentrates on fundamental
design principles for network services,
protocols, and control mechanisms;

resource allocation and sharing;
performance measurement and analysis.
Grossglauser recently joined AT&T
Laboratories in the US. An article on his
work will be published in the April 1999
issue of ERCIM News.

The Cor Baayen award, up to now
restricted to researchers working in one
of the fourteen ERCIM institutes, will be
open from next year on to any young
researcher having completed his/her
PhD-thesis in one of the fourteen
‘ERCIM countries’: Czech Republic,
Denmark, Finland, France, Germany,
Greece, Hungary, Italy, Norway,
Slovakia, Sweden, Switzerland, The
Netherlands and the UK. The maximal
two candidates per country have to be
nominated by the corresponding ERCIM
member institute. For details, see
h t t p : / / w w w . e r c i m . o r g / a c t i v i t y / c o r - b a a y e n . h t m l

■
Please contact:

Frans Snijders – CWI
Cor Baayen Award Co-ordinator
Tel: +31 20 592 4171/4009
E-mail: Frans.Snijders@cwi.nl

ERCIM 10th
Anniversary

Event
Amsterdam, 4-5 November 1999

ERCIM will celebrate its 10th anniversary with a two days
event in Amsterdam, 4-5 November 1999. The first day will
be an internal event for ERCIM-member personnel only,
while the second day will be dedicated to Information
Technolgy users in industry.

ERCIM – a virtual laboratory for IT research in
Europe, Amsterdam, Thursday 4 November 1999

Under this slogan scientists of the ERCIM institutes will be
given the opportunity to present their ideas on matters that
are closely related to IT research. It is not research itself that
should be targeted with these presentations but rather the
issues that come up on a meta-level. To give some examples
of the topics that might be tackled, we mention: ‘The future
of traditional scientific journals in the Internet Age ‘Should
Computer Science and Mathematics be kept separate?’, ‘Is
freeware (cooperative development of software) a viable

alternative to the traditional model?’, ‘Why is software less
reliable than a washing machine?’, ‘Why Framework
Programs don’t work’, ‘Alternatives to traditional scientific
output metrics’, ‘Are European CS-curricula too theoretical?’
Note that this is not an exhaustive list but just an indication.
The presented ideas should be provocative and express
opinions of individuals, not necessarily shared by their home
institutes.

ERCIM scientists interested to contribute to this event are
invited to contact their Executive Committee representative.

ERCIM – leveraging European R&D for Business
and Society, Amsterdam, Friday 5 November 1999

With this event ERCIM will provide a forum for the
presentation, discussion and exchange of ideas between
people from industry, R&D and government. Representatives
from European industry, the European Commission and
national governmental bodies will be invited to meet with
ERCIM scientists, attend presentations of top research
projects and listen to visionary speeches given by leading
people from European industry and research organizations.

Please contact:

ERCIM office
Tel +33 1 3963 5303
E-mail: office@ercim.org

4 5

ERCIM President Gerard van
Oortmerssen (right) presenting the
Cor Baayen Award to Matthias
Grossglauser.

JOINT ERCIM ACTIONS

4

8th DELOS
Workshop
on User
Interfaces in
Digital Libraries
by Preben Hansen

The 8th DELOS Workshop on User
Interfaces in Digital Libraries was held
in Stockholm, Sweden, 21-23 October
1998. The DELOS Working Group is
an action of the ERCIM Digital
Library Initiative (http://www.area.
pi.cnr.it/ErcimDL/). During the
workshop, a ‘mini-workshop’ was
held, together with participants from
the 4th ERCIM User Interfaces for All
Workshop, another ERCIM Working
Group, that was held from 19-21
October 1998. 21 participants,
including guest speakers attended the
workshop. Eleven presentations were
made during the workshop.

A Digital Library is the integration of
several different components and will
include a range of content and services,
as well as a large and diverse group of
users. It is important to develop an
understanding of the overall tasks and
interactions users are engaged in when
entering a Digital Library. We interact
constantly with our environment through
different communication mechanisms
and processes. Information seeking and
retrieval in Digital Libraries is but a
special case of such a process. Analysis
and evaluation of user, systems and
interactions are needed to successfully
build future Digital Libraries.

Presentations

The workshop started with a ‘Challenge
paper’ (Preben Hansen and Jussi
Karlgren, SICS). The paper summarized
some important research issues raised 25
years ago related to information retrieval
(IR) and user interfaces (UI) and its
relevance for the workshop. The authors
found that some of the questions raised
then were still valid today, such as the

characteristics of the user, the task, the
information content and medium, the
computer and IR techniques and the role
of evaluation and feedback in the
redesign cycle, among others. However,
there has also emerged new research
areas such as multimedia content,
multimodal interaction, multilingual
information and users and distributed
systems and collections.

Our guest speaker, Professor Nicholas
Belkin, Rutgers University, provided a
‘road-map’ on important issues for
Digital Libraries in his paper
‘Understanding and supporting Multiple
Information Seeking Behaviours in a
Single Interface Framework’. First,
Belkin presented a definition of a Digital
Library and what functions need to be
supported in such a framework.
Furthermore, Nick Belkin described his
and his group’s work within the third
TIPSTER research program. The goal of
the project is to identify and classify
different information seeking strategies
(ISSs), characterize sequential structures
of ISSs, identify specific combinations
of IR techniques appropriate for different
ISSs, and construct and evaluate system
which adapts to support different ISSs in
the course of a single information seeking
episode.

Constantine Stephanidis, ICS-FORTH,
our second guest speaker, raised some
critical issues for interaction design in
digital libraries in the light of HCI and
Digital Libraries. Among the main issues
and challenges mentioned were diverse
user groups, variety in the context of use,
and technological proliferation. The
author also proposed a way to deal with
the design of Digital Libraries containing
three phases: Design processes and
techniques, Implementation, and
Evaluation.

The paper presentations covered areas
such as multilingual aspects (Nuño
Miguel Antunes Freire, INESC and
Aarno Jarno Tenni, VTT); evaluation of
information systems (Silvana
Mangiaracina, CNR and Demosthenes
Akoumianakis, ICS-FORTH); agent-
based system of semantical information
retrieval (Kuldar Taveter, VTT);
visualization (Francesca Costabile, Bari

University); implementation of user
interfaces (Donatella Castelli, CNR and
László Kovács, SZTAKI) and finally,
genres and clustering (by Johan Dewe
and Niklas Wolkert, Netsolutions AB).

Discussion summary

Some important issues discussed during
the workshop:

• information seeking and retrieval as
embedded activities within Digital
Libraries

• techniques and methods to analyse, and
evaluate different systems as well as
different users, their behaviour, tasks
and the ideas behind the systems
developed

• support interactions with information,
such as texts and multimedia and access
to multilingual information in
information seeking activities

• future Digital Libraries will encompass
alternative modalities for
representations of information seeking
activities.

The papers from the workshop will be
published as workshop proceedings at
h t t p : / / w w w . e r c i m . o r g / p u b l i c a t i o n s / w s -
proceedings/.

■
Please contact:

Preben Hansen – SICS
Tel: +46 8 633 1554
E-mail: preben@sics.se

JOINT ERCIM ACTIONS

5

4th ERCIM
Workshop
on User
Interfaces for All
by Constantine Stephanidis

The 4th workshop of the ERCIM
Working Group on User Interfaces for
All (UI4ALL) took place in Sweden 19-
21 October 1998, in the rather
arresting settings of the Stockholm
urban archipelago in the former
Långholmen jailhouse. The local
organiser was Dr. Annika Waern, of
the Swedish Institute of Computer
Science (SICS). In addition to the wide
ranging topics addressed annually, this
year’s workshop focused on the special
theme ‘Towards an Accessible Web’,
and attracted considerable interest,
within, but also beyond Europe.

The Workshop featured two invited
speakers, both of them working in the
field of Web accessibility and affiliated
with the activities of W3C-WAI (Web
Accessibility Initiative): Dr Daniel
Dardailler, Project Manager of W3C-
WAI, and Dr Michael Paciello, from the
Yuri Rubinsky Insight Foundation,
Canada, and the Web Able Solutions,
USA.

The paper presentations and the
discussions during the workshop covered
a variety of related topics, including:
Design Methodologies for Universal
Access, Extending the Browser
Metaphor, Adaptivity and Adaptiveness,
WWW Browsers for All, Design
Principles and Guidelines, and
Information Filtering and Presentation.

The topics addressed current and on-
going activities in the broader context of
universal in the emerging Information
Society. Particular reference was made
to the aims and current achievements of
the W3C-WAI, as well as on the results
of the ACTS-AC042 AVANTI project,
which, amongst other things, involved
the development of an adaptable and
adaptive Web browser (four ERCIM

member organisations, CNR-IROE,
GMD-FIT, VTT and FORTH-ICS have
participated in the AVANTI consortium).

Following a stringent peer review
process, the Workshop’s proceedings
have included three main categories of
articles accepted for publication: (a) 7
long papers, (b) 4 short papers, and (c) 4
position papers. Additionally 3 posters
were presented during the interactive
poster session at the Workshop. The
proceedings of the Workshop are
electronically available via the Web site
of the ERCIM Working Group on ‘User
Interfaces for All’ at:
http://www.ics. forth.gr/ercim-wg-ui4all

In the morning of 21st of October 1998,
the Annual General Meeting of the
ERCIM UI4ALL Working Group was
held at the same location. Following a
review of recent progress in the field, the
group focused on the opportunities for
the submission of project proposals in
the 5th Framework Programme, the
planning of the next WG Annual
Meetings, the prospect of cooperation
with the DELOS WG for drafting a joint
document (White Paper), and
mechanisms for more systematic
collaboration between the two ERCIM
Working Groups.

The WG has confirmed the dates for the
5th Annual Workshop to be held in
Germany (GMD), 3-5 November 1999;
local organisers will be Alfred Kobsa and
Michael Pieper. The first call for the 5th
Annual Workshop will be out in January
1999, the second call in April 1999, and
the deadline for paper submission will
be 1st of July 1999. The WG has also
decided to have its 6th Annual Workshop
in Florence, Italy (CNR-IROE), in
October 2000, and the local organiser
will be Pier Luigi Emiliani.

■
Please contact:

Constantine Stephanidis – FORTH
Tel: +30 81 391741
E-mail: cs@ics.forth.gr

ERCIM DELOS -
User Interfaces
for All
Joint Workshop
by Constantine Stephanidis
and Preben Hansen

On the occasion of the co-location of
the 4th Annual ERCIM Workshop on
‘User Interfaces for All’, and the 8th
ERCIM DELOS Workshop on ‘User
Interfaces for Digital Libraries’, which
took place in Stockholm, Sweden,
19-21 October and 21-23 October 1998
respectively, a joint meeting (mini-
workshop) was organised. The
objective of this meeting was to discuss
and elaborate an R&D agenda for HCI
activities in the field of Digital
Libraries.

The main issues that were discussed
during the meeting include the
characterisation of the current situation
concerning the area of interaction design
for Digital Libraries (particularly in the
context of R&D activities of the two
working groups), the opportunities for
the submission of proposals for joint
project work in the context of the 5th
Framework Programme of the European
Commission, and the drafting of a White
Paper to articulate the vision and scope
of the common R&D directions.

During this workshop, critical R&D
themes of common interest emerged
pertaining to the contributions from
information retrieval, co-operation and
collaboration, interaction metaphors,
visualisation, ubiquitous access,
customisation and individualisation,
interoperability, etc, to facilitate both the
informational and situational (eg social)
aspects of Digital Library systems. In
addition, non-technological aspects such
as ethics, intellectual property rights and
the role of the end-users were deemed as
crucial elements of success in
constructing and deploying Digital
Library systems.

JOINT ERCIM ACTIONS

6

In the course of this workshop, the
opportunity to compile a White Paper to
reflect the common ground and provide
a joint R&D roadmap for future actions
in this area was received very favourably.
The White Paper is expected to give an
account of the state of the art
internationally, to identify existing gaps
in current R&D efforts, and to synthesise
the range of critical issues that need to
be addressed in the context of new co-
operative R&D activities.

■
Please contact:

Constantine Stephanidis – FORTH
Tel: +30 81 391741
E-mail: cs@ics.forth.gr

Preben Hansen – SICS
Tel: + 46 8 6331554
E-mail: preben@sics.se

DELOS
Workshop
on Emerging
Technologies
in the Digital
Libraries
Domain
by Carol Peters

The objective of the DELOS Working
Group, funded by the ESPRIT Long
Term Research Programme, is to
promote research into the further
development of digital library
technologies. Since 1996, DELOS has
organised Workshops on DL-related
research topics (see this number for a
report on the 8th DELOS Workshop
on User Interfaces), has been
responsible for initiating a series of
European Conferences on Digital
Library Research and Advanced
Technology (ECDL’99 will be held
next September in Paris) and has
partially financed the setting up of the
ERCIM Technical Reference Digital
Library (ETRDL). In addition,
DELOS has sponsored five European-

US collaborative working groups.

A digital library is the integration of
multiple components which do not
initially fit together in a seamless fashion
for a number of reasons. Firstly, the
necessary components come from a
background of different communities
and, secondly, they should enable new
functions which were not under
consideration when the individual single
components were first designed and
implemented. This means that the
realisation of large-scale globally
distributed digital libraries depends as
much on collaborative effort as it does
on the development of new technologies

in order to develop systems which truly
integrate their components. A high level
of collaboration is required both across
disciplines and across geographical
boundaries. For this reason, DELOS in
collaboration with the US National
Research Foundation decided to set up a
group of EU-US working groups with
the mandate to jointly explore technical,
social and economic issues and plan
common research agendas with respect
to a set of key DL research areas in which

international cooperation was considered
to be of particular importance. The
Working Groups addressed the following
DL-related research areas:

• interoperability between digital
library systems

• metadata

• intellectual property rights and
economic issues

• resource indexing and discovery in a
globally distributed digital library

• multilingual information access.

Each group studied the state-of-the-art
and current trends in their area and

produced a set of recommendations and
priorities for future R&D activities.

The results of these studies were
presented at a Workshop, held in Brussels
on 12 October, 1998, and sponsored by
DELOS and by ERCIM as part of the
ERCIM Digital Library Initiative. During
the morning session the European and
US Coordinators of the Working Groups
(Costantino Thanos, IEI-CNR, and Dan
Atkins, University of Michigan)

Workshop participants.

Panel Discussion: (from left to right) Simon Bensasson, EC – Long Term
Research; Stephen Griffin, US National Science Foundation; Dennis
Tsichritzis, GMD; Roberto Cencioni, EC - Telematics Language Engineering;
Shigeo Sugimoto, University of Library and Information Science, Japan;
Bernard Smith, EC – Telematics Information Engineering.

JOINT ERCIM ACTIONS

7

described the objectives of the EU-NSF
collaboration and their vision for the
future of Digital Libraries to an invited
audience composed mainly of European
research coordinators, funding officials
and heads of national research
programmes, plus some representatives
from leading industries interested in
aspects of Digital Library research and
applications. European and US leaders
of the working groups (Christos
Nikolaou, University of Crete; Carl
Lagoze, Cornell University; Hans-Jörg
Schek, ETH-Zurich; Thomas Baker,
GMD, Bonn; Judith Klavans, Columbia
University, US) then outlined the main
proposals for each area of activity. The
session ended with a summary of the
global recommendations of the groups
for the efficient and effective
development of the next generation of
digital library systems presented by Peter
Schäuble, ETH-Zurich and Alan
Smeaton, City University, Dublin.

In the afternoon, a panel discussion,
chaired by Dennis Tsichritzis, GMD and
former president of ERCIM, gave
Programme Officers of the European
Commission and the US National
Science Foundation and a representative
of the Japanese DL community the
opportunity to present their own opinions
and the views of their agencies with
respect to developments in the digital
library area and discuss future scenarios
for cooperative actions.

The first results of the joint EU-NSF
Working Groups, summarised as ‘An
International Research Agenda for
Digital Libraries’, have been published
by ERCIM. Final reports by the five
Groups will be available early 1999. For
an on-line version of the summary report
and for further information on the
activities of the DELOS Working Group,
see http://www.iei.pi.cnr.it/DELOS/

■
Please contact:

Costantino Thanos – IEI-CNR
DELOS Coordinator
Tel: +39 050 593 492
E-mail: thanos@iei.pi.cnr.it

4th ERCIM
Environmental
Modelling
Group
Workshop
by Thomas Lux

The fourth workshop of the ERCIM
Environmental Modelling Group on
Environmental Models and
Computational Methods was held in
Heraklion, Crete, Greece on 16-17
November 1998. The workshop was
hosted by IACM FORTH, the Institute
of Applied and Computational
Mathematics of the Foundation for
Research and Technology Hellas
under the chairmanship of Nikolaos
A. Kampanis (IACM FORTH).

The lectures and discussions at the
workshop focussed especially on

advancing the dialog among researchers
working in the field of environmental
modelling on the issue of computational
methods. Modern high-performance
computers provide a powerful base for
improving existing and developing new
computational techniques for the efficient
solution of complex models used for the
numerical simulation of various
environmental processes. Further,
discussions has been initiated

on the efficiency and accuracy of current
environmental models, as well as

possible improvements concerning the
degree that physical phenomena are
interpreted through the governing
equations. This may be accomplished by

exploiting, through the exchange of
experience among the participants, the
robustness, efficiency and range of
applicability of modern computational
methods.

Lectures presenting recent results of
experimental methods for the analysis of
atmospheric dynamics, the modelling and
simulation of coastal water pollution, and
the investigation of aquatic ecosystems
have considerably enlarged the field of
environmental domains studied within
the frame of the working group.

A special item of the workshop program
was a round table discussion about the
further activities of the ERCIM Working
Group Environmental Modelling.
Possible places and dates of the next
workshop have been raised. Moreover,
topics for future joint project proposals
within the Fifth Framework Programme

of the European Union have been
presented. The program was wound up
by a common dinner in a typical Crete
restaurant. Detailed information about
the workshop program and the
participants can be found at
h t t p : / / g o r g o n a . i a c m . f o r t h . g r / ~ f l o u r i / E R C
IM/index.html.

■
Please contact:

Achim Sydow, Working Group Chairman
or Thomas Lux – GMD
Tel: +49 30 6392 1820
E-mail: lux@first.gmd.de

The participants of the 4th ERCIM Environmental Modelling Workshop.

8

PROGRAMMING LANGUAGE TECHNOLOGIES

Programming
Language
Technologies
by Neil D. Jones

Mankind is the species that uses and
makes tools; but it is just as uniquely
the species that uses and makes
languages. Once computers greatly
extended our tools’ reach, effective
power, and degree of automation, it
was inevitable that sophisticated
control and interaction mechanisms
have become indispensable for
controlling today’s advanced and
automatic tools. The language skill
enters just here: we are able not only
to communicate, but also to design
special-purpose command and
communication protocols, and to
design algorithms that manipulate
programs as data objects. Further, it
is increasingly routine to use the
computer to verify (by symbol
manipulation!) that programs achieve
their purposes correctly and without
failure, deadlock, or issuing unsafe
commands to the tools they steer.

The focus of this ERCIM News Special
Theme is primarily on the program itself,
as an object of study or subject of
manipulation; or on a programming
language in which programs may be
written. Thus this Working Group takes
a somewhat different view than other
(admittedly closely related) Computer
Science activities that also yield
programs as outputs, or use programs as
tools: Software Engineering, Formal
Methods, Human-Computer Interaction,
Computer-Supported Cooperative Work
etc. The main point is that sometimes
programming language can be a tool f o r
solving a class of problems. It thus
behooves us better to understand our
artificial languages, just as deeper
understanding of physical tools assisted
the industrial revolution.

The contributions to this issue witness
widespread language-related activity
within ERCIM. They encompass a wide
range including:

• a language as a solution, establishing
a framework or viewpoint, or giving
users new capabilities

• tools manipulating languages:
compilers, interpreters, program
analysers, etc

• ways to solve problems involving
programs, in particular legacy code
and the notorious Year 2000 problem

• semantics: not as an ivory-tower end
in itself, but as a crystallisation of the
essence of a particular programming
language that can be used as a basis
for programming environments

• implementation perspectives: what
can be done (engineering), limits
(pragmatic or theoretical studies of
complexity), how to assess program

complexity, or to understand
programs

• ways to generate programs
automatically: essential in the long
run, if human bottlenecks are to be
overcome.

Invited papers: the first two are from
outside ERCIM: the Bandera Project uses
abstract interpretation, partial evaluation
and model checking to certify Ada
program correctness; and the ETI
platform allows wide-range
experimentation with prototype software
tools.

The next group concerns software re-
e n g i n e e r i n g : how to deal with the

Programming Language Technologies
by Neil D. Jones 8

Bandera: Tools for Automated Reasoning
about Software System Behaviour

by Matthew Dwyer, John Hatcliff, and
David Schmidt 9

ETI: An Online Service for Tool
Co-ordination

by Bernhard Steffen, Tiziana
Margaria, and Volker Braun 10

AnnoDomini: From Type Theory to a Year
2000 Conversion Tool

by Peter Harry Eidorff, Fritz Henglein,
Christian Mossin, Henning Niss, Morten
Heine Sørensen and Mads Tofte 12

Software Renovation
by Arie van Deursen 13

Symbolic Techniques for Program
Analysis

by Henk Nieland 14

Security Verification: a Programming
Language Approach

by Thomas Jensen 15

Deductive Proof of Software Properties
by Patrizia Asirelli

and Franco Mazzanti 15

Certification of Imperative Programs in the
System Coq

by Jean-Christophe Filliâtre 16

Generating Program Generators
by Arne J. Glenstrup, Henning

Makholm and Jens Peter Secher 17

PROGGEN – a Tool for Automatic Code
Generation

by Therese Nilsen 18

MAP: a Tool for Program Derivation based
on Transformation Rules and Strategies

by Alberto Pettorossi, Maurizio
Proietti, and Sophie Renault 19

Vanilla: Towards more Modular
Programming Languages

by Simon Dobson 20

Dynamic Translator Development:
Modelica in the Python TRAP

by Thilo Ernst 21

New Language on the Block: Java for
High-Performance Computing

by Mike Ashworth 23

A Formal Semantics and an Interactive
Environment for Java

by Isabelle Attali 24

Formal Underpinnings of Object
Technology

by Juan Bicarregui 25

The JoCaml System: a Language for
Programming on the Internet

by Sylvain Conchon, Fabrice le
Fessant and Luc Maranget 26

Modelling Mobile Applications
by Stefania Gnesi

and Laura Semini 27

The Mozart Platform for Dstributed
Application Development

by Seif Haridi and Peter Van Roy 28

Objective Caml – a Purpose High-level
Programming Language

by Xavier Leroy, Didier Rémy
and Pierre Weis 29

GRADE – Graphical Environment for
Parallel Programming

by Peter Kacsuk
and Sandor Forrai 30

Programming with Rewrite Rules and
Strategies

by Hélène Kirchner 32

Using Co-ordination to Parallelize Existing
Sequential Programs

by Farhad Arbab, Kees Everaars
and Barry Koren 33

CONTENTS

9

existing masses of old, undisciplined but
indispensable programs? A semantics-
based and successful Year 2000
conversion tool is described. Further
works describe systematic, serious
approaches to dealing with legacy code
in general.

After initial disappointments based on
unrealistic expectations, steady progress
has occurred in automatic program
analysis and verification: the topic of the
next group of papers, all of which
concern validation of programs in real-
world rather than academic languages.

Recent years have seen increasing
activity in automatic p r o g r a m
g e n e r a t i o n, here witnessed by three
papers based respectively on partial
evaluation, code skeletons, and program
transformation. Here, a good semantic
basis has had clear practical
consequences. Further, the heavy task of
compiler development has been eased by
increasingly sophisticated, flexible,
modular, and user-friendly high-level
tools and languages.

The next group of papers concerns Java
and other object-oriented l a n g u a g e s .
These pragmatically successful
languages are becoming better
understood in both practice and theory,
resulting in more sophisticated tools. The
next three papers witness a similar
advance in the fields of d i s t r i b u t e d
systems and mobile computing: s u b j e c t s
which are taking clearer form, partly
aided by appropriate programming
language formalisms.

Finally, there is still scope for new
programming languages, and the last
group of papers describes several: a now
well-established object-oriented version
of ML; a graphical environment for
parallel programming; and the use of
rewrite rules to link practical
programming with mathematics as
known from algebra.

■
Please contact:

Neil D. Jones – DIKU/DANIT
Programming Language Technologies
Working Group chairman
Tel: +45 35 32 14 10
E-mail: neil@diku.dk

Bandera: Tools
for Automated
Reasoning
about Software
System
Behaviour
by Matthew Dwyer, John Hatcliff,
and David Schmidt

The Bandera Project aims to develop
techniques and tools for automated
reasoning about software system
behavior, and to apply these tools to
construct high-confidence mission-
critical software. Automated reasoning
is achieved by (1) mechanically
creating high-level models of software
systems using abstract interpretation
and partial evaluation technologies,
and then (2) employing model-
checking techniques to automatically
verify that software specifications are
satisfied by the model. This project is
a collaborative effort between the
Laboratory for Specification, Analysis
and Transformation of Software
(SANTOS) at Kansas State University
and researchers at the Universities of
Hawaii and Massachusetts. Work in
SANTOS is supported in part by
grants from the US National
Aeronautics and Space Administration
(NASA), the Defense Advanced
Research Projects Agency (DARPA)
and the National Science Foundation
(NSF).

Modern mission-critical software
systems tend to be highly complex and
concurrent, and they often have stringent
correctness requirements. Pre-
deployment reasoning about system
behavior is crucial in application areas
such as avionics, industrial, health care,
military command-and-control where the
cost of failure in the field is extremely
high. Unfortunately, the inherent size and
complexity of such systems prohibit
classical validation techniques, such as
testing, from providing high levels of
assurance of reliability and correctness.

Subtle timing-related defects in
concurrent and embedded systems are
very difficult to reveal through testing.
To do so would generally require
software testers to exercise all feasible
execution paths and all possible
interactions between software
components. In modern systems, this is
virtually impossible, and many deployed
systems fail when real-world use leads
to an execution path that was not foreseen
by the software designers. Better
verification techniques are sorely needed.

The Bandera tools allow software
designers and quality assurance
personnel to state properties about
software source code that must hold
along all execution paths. For example,
in a priority-based concurrent system
developers might want to assure that: (1)
when two components of different
priority levels attempt to access a shared
resource the higher-priority components
gets access first; (2) when a component
attempts to access a resource it eventually
succeeds. Ideally, the tools should
automatically explore all execution paths
and check to see if the given properties
hold. With some properties this can be
done, but in most cases the size of the
system and the complexity of the
specification makes this infeasible. In
these cases, the user guides the tools in
the construction of a smaller abstract
model of the software system, and then
the tools can automatically check to see
if a given specification holds in the
model. If the property holds in the model
and if the model safely approximates the
software system’s behavior, this
guarantees that the property also holds
in the original software system. If the
property does not hold, the tools will
generate a counter-example —- a trace
in the model system that violates the
given property. By appropriately
interpreting the counterexample, one can
locate the source of the offending defect
in the system being modeled.

In the process outlined above, safe and
effective model creation is crucial for the
approach to be successful. To make
automatic checking tractable, the model
must discard information about the
program that is irrelevant to the property
being verified. However, it must retain

PROGRAMMING LANGUAGE TECHNOLOGIES

10

PROGRAMMING LANGUAGE TECHNOLOGIES

enough structure to reason about relevant
execution paths. The Bandera tools use
abstract interpretation, a rigorous
semantics-based methodology for
constructing static analyses of programs,
to form safe abstractions of software, and

partial evaluation and slicing techniques
to build compact models. The figure
gives the architecture of the tool suite for
reasoning about Java programs.

Given software component source code
S and a property to be verified P, a slicing
tool then cuts away portions of S that are
irrelevant for verifying P. The user then
selects abstract interpretation definitions
to be used in abstracting the remaining
program components. These definitions
can be drawn from a library of common
abstractions or they can be defined from
scratch. Once the abstractions are
specified, abstraction-based partial
evaluation (ABPE) creates an abstracted
and specialized version of the source
program. The transition system generator
compiles the abstract program to one of
several existing model-checking tool
input languages. If verification fails,
counter-examples produced by the
model-checking tools are rendered in
terms of the original source program.

We have applied this methodology to
several software systems written in Ada.
We have validated correctness properties
of a programming framework that

supports parallelization of worklist
algorithms; this framework has been used
to implement a variety of scientific
computing applications. We have also
performed unit-level verification of
generic stack, queue, and priority-queue

implementations and demonstrated the
ability of model checking to detect
realistic implementation defects in such
systems. The lessons learned from these
experiences have provided important
validation of and feedback to our ongoing
design and implementation of Java model
construction tools. We are working with
the automated software engineering
group at the NASA Ames Research
Center to incorporate these tools into
their avionics software workbench.

More information about this project is
available at:
http://www.cis.ksu.edu/~santos

■
Please contact:

Matthew Dwyer, John Hatcliff, and David
Schmidt – SANTOS Laboratory,
Department of Computing and
Information Sciences, Kansas State
University
E-mail: {dwyer, hatcliff,
schmidt}@cis.ksu.edu

ETI: An Online
Service for Tool
Co-ordination
by Bernhard Steffen, Tiziana
Margaria, and Volker Braun

The Electronic Tool Integration
platform (ETI) associated to the
International Journal on Software
Tools for Technology Transfer (STTT)
is designed for the interactive
experimentation with and co-
ordination of heterogeneous tools. ETI
users are assisted by an advanced,
personalised Online Service guiding
experimentation, co-ordination and
simple browsing of the available tool
repository according to their degree
of experience. In particular, this allows
even newcomers to orient themselves
in the wealth of existing tools and to
identify the most appropriate
collection of tools to solve their own
application-specific tasks.

ETI contains and manages a
heterogeneous wealth of information,
functionalities and data. Currently this
comprises verification tools for real time
systems and model checkers. The
integration of programming language
tools like type checkers, optimisers and
code generators is on the way. The ETI
Service can be accessed via its
homepage, http://eti.cs.uni-dortmund.de.
From there, users can:

• access online information on the tools
via hyperlinks to each tool’s home site

• access online a stand-alone version of
each tool, centrally located at the ETI
service sites

• access the ETI repository of integrated
tools. It contains a collection of
functionalities offered by the individual
tools, classified for ease of retrieval
according to behavioural and
interfacing criteria

• experience tools and functionalities, by
(a) running the (stand-alone or
integrated) tools on libraries of
examples, case studies, and benchmarks
made available on the ETI platform,
testing and running single tool

Architecture of the
tool suite for
reasoning about
Java programs.

11

PROGRAMMING LANGUAGE TECHNOLOGIES

functionalities, capturing specific
features offered by different integrated
tools on the same examples from within
a uniform graphical user interface
provided by ETI, (c) constructing own
application-specific heterogeneous
tools through combination of
functionalities coming from different
tools within the ETI platform, (d)
loosely specifying co-ordination tasks,
which can be then automatically
completed to executable tool sequences
by means of ETI’s co-ordination
support; this, in particular, takes care
of data format incompatibilities

• experiment with own sets of data, to be
deployed in user-specific, protected
home areas.

The wealth of input/output formats
makes correct tool combination
extremely difficult. ETI therefore
provides co-ordination support in order
to ease usability: based on its interfacing
layer, which organizes a growing library
of type transformers, whenever possible,
type-incorrect tool sequences are
automatically completed to directly
executable ones. This mechanism, which
is based on model synthesis for temporal
logics, is hidden from newcomers.
Experts, however, are able to investigate
the full potential for type completion in
order to flexibly exploit the entire tool
repository.

In addition, ETI provides high-level task
specification languages, graphical
support for specifications and user
interaction, as well as prototype
animation. Together this eases the access
and use of the functionalities offered by
different tools, even if implemented in
different languages of different
programming paradigms (functional,
imperative, object-oriented) and running
on different platforms. Together with the
loose specification of single
functionalities (simply in terms of desired
properties), this allows even newcomers
to develop and test complex tool
combinations in a comfortable, intuitive
manner.

The figure shows the global multi-tier
architecture underlying the ETI service:
via a unique entry point, visitors are
routed to the most appropriate ETI Server

which manages their session. The actual
tool execution is a matter of the Tool
Servers, which may themselves delegate
tool execution to an Application Server.
Typically this is the case if the requested
tool does not run under UNIX or LINUX.

The ETI Online Service plays a public
service role, giving users the possibility
of direct, hands-on, experience with a
wealth of available tools and
functionalities. This also includes

features like the ETI Online Forum,
where users may eg, propose case
studies, and report on their experiences.
The service is intended to develop into a
collaborative, independent tool
presentation and evaluation site: users
are invited to report on their experience
with the integrated tools in the context
of the service as a:

• directory for possible tools and
algorithms satisfying totally or partially
their needs

• (vendor- and producer-) independent
test site for trying and comparing
alternative products and solutions
without any installation overhead

• quality assessment site for the published
tools, which are refereed according to
requirements like originality, usability,
installability, stability, performance,
design

• independent benchmarking site for
performance on a growing basis of
problems and case studies.

This should stimulate the communication
between tool builders and tool users as
well as between academia and industrial
practice, supporting the transfer of tool-
related technology. In fact, we are
optimistic that the typical hesitation to
try out new technologies can be
overcome since serious hurdles, like

installation of the tools, getting
acquainted with new user interfaces, lack
of direct comparability of the results and
of performances, are eliminated.
Moreover, the intended collaborative
effort of the ETI user community to
provide easily accessible information
about fair, application-specific
evaluations of various competing tools
on the basis of predefined benchmarks,
will be of substantial help for everybody
in need of tool support.

■
Please contact:

Volker Braun – Universität Dortmund
Tel: +49 231 755 5806
E-mail: eti@eti.cs.uni-dortmund.de

Distributed Architecture of the ETI Service.

12

PROGRAMMING LANGUAGE TECHNOLOGIES

AnnoDomini:
From Type
Theory
to a Year 2000
Conversion Tool
by Peter Harry Eidorff, Fritz
Henglein, Christian Mossin,
Henning Niss, Morten Heine
Sørensen and Mads Tofte

AnnoDomini is a commercially
available source-to-source conversion
tool for making COBOL programs
Year 2000 compliant. It was developed
in the last two years by a group at
DIKU (part of the ERCIM partner
DANIT) and grew directly out of
research in the theory of programming
languages; it uses type-based
specification, analysis, and
transformation. These are combined
into an integrated software
reengineering tool and method for
finding and fixing Year 2000
problems. AnnoDomini’s primary
goals have been flexibility,
completeness, correctness, and a high
degree of safe automation.

The Year 2000 (Y2K) Problem refers to
the inability of software and hardware
systems to process dates in the 21st
century correctly. The problem arises
from representing calendar years by their
last two digits and thus restricting the
range of representable years to 1900-
1999 A.D. Making programs Y2K
compliant involves date field expansion
or masking. Expansion refers to
expanding unsafe 2-digit years to 4-digit
years. Masking denotes a variety of
methods for extending 2-byte year
representations into the 21st Century. In
windowing, for example, a pivot year
determines whether a two-digit year
belongs to the 20th or the 21st century.
For example, with pivot 50, 59 represents
1959 A.D. and 41 represents 2041 A.D.

AnnoDomini (registered trademark of
Hafnium ApS) is a method and source-
to-source conversion tool, developed at

DIKU, for making COBOL programs
Year 2000 compliant. It runs on
Windows NT 4.0 and Windows 9X, and
is commercially available from
Computer Generated Solutions, Inc. (an
IBM business partner) – see
http://www.cgsinc.com and
http://www.hafnium.com. The converted
programs do not require special compiler
support, but compile and execute in their
existing operating environment.

In COBOL programs, dates are
represented using the data types and
operations of the source language:
numbers, strings of characters and flat
records. Their intentional interpretation
as representations of dates is not explicit.
The AnnoDomini approach is based on
reverse engineering the programmer-
intended year interpretations,
encapsulating them as abstract types, and
replacing their implementation by safe,
improved code with the same interface.
This is done in three conceptual phases:
seeding, type checking, and conversion.

In the first phase the user seeds chosen
variable declarations of the program with
year information; that is, some of the

program’s variables, eg file descriptions,
are annotated with types that specify
where years occur in them, if at all.
AnnoDomini also has support for
automatic seeding.

In the second phase AnnoDomini
propagates the seeding information to
other data by type inference. For
example, if the program assigns the
contents of one variable to another,
AnnoDomini infers that they must have

the same type. During propagation
AnnoDomini also checks that the seeded
and propagated types are consistent with
each other. For example, if the program
assigns the contents of one variable to
another, and the variables have different
types, AnnoDomini signals an error.

In general, type errors may stem from
several sources. For instance, seeding
might be wrong, or the program may
actually contain a Year 2000 Problem.
AnnoDomini does not attempt to guess
what the real cause of a type error is and
how to eliminate it. It suggests a number
of plausible corrective actions, however,
typically to change the declaration of a
variable, or to insert a type coercion, eg

AnnoDomini Graphical User Interface.

13

PROGRAMMING LANGUAGE TECHNOLOGIES

a coercion between 2-digit years and 4-
digit years. Like type declarations, such
coercions are specified as annotations –
the actual conversion code is inserted
automatically in the conversion phase.
AnnoDomini also provides point-and-
click access to the statements causing
type errors and to the declarations of the
variables appearing in these statements
for manual browsing and editing of the
source code.

AnnoDomini issues warnings for all
relational and arithmetic operations for
which there is insufficient type
information to determine whether their
operands contain years or not. This is a
case where seeding is incomplete, with
potentially dangerous consequences. The
user is expected to check the warnings
to determine whether they cover over any
potential Year 2000 problems.

The third and final phase consists of
virtual conversion and actual conversion.
During virtual conversion the user
specifies Year-2000-safe types for each
variable. For example the user might
specify that some variable should be
expanded from a six-digit to an eight-
digit date representation. Actual
conversion is then fully automatic: at the
push of a button, data declarations are
expanded as desired, calls to the specified
coercions are inserted, and arithmetic and
relational operations involving two-digit
years are replaced by calls to Year-2000-
safe library routines.

AnnoDomini consists of three
components: the analysis and conversion
engine (60,000 lines of Standard ML),
the graphical user interface (10,000 lines
of Visual Basic), and IBM’s Live Parsing
Editor (a syntax-sensitive program
editor). The three components are tightly
integrated; for instance, by a single click
the user can have code implementing a
suggested corrective action inserted into
the program automatically by the editor.

The underlying software reengineering
method in AnnoDomini consists of
identifying and isolating potentially
problematic data and their associated
operations according to their intended
use (here as calendar years),

encapsulating them as abstract types, and
finally replacing their implementation by
safe, improved code with the same
interface. This method appears to be
eminently applicable to other problems
than Year 2000 remediation, such as
reengineering financial systems for the
introduction of the Euro or for the Dow
Jones Index passing the 10,000 mark. To
address such problems is one possible
line of future work.

■
Please contact:

Morten Heine Sørensen – DIKU and
Hafnium ApS
Tel: +45 35321405
E-mail: rambo@diku.dk

Software
Renovation
by Arie van Deursen

In 1976, Belady and Lehman
formulated their ‘Laws of Program
Evolution Dynamics’. First, a software
system that is used will undergo
continuous modification. Second, the
unstructuredness (entropy) of a system
increases with time, unless specific
work is done to improve the system’s
structure. This activity of improving
legacy software systems is called
system renovation. It aims at making
existing systems more comprehensible,
extensible, robust and reusable.

Due to the fact that a typical industrial
or governmental organization has
millions of lines of legacy code in
continuous maintenance, well-applied
software renovation can lead to
significant information technology
budget savings. For that reason, in 1996
Dutch bank ABN AMRO and Dutch
software house Roccade commissioned
a renovation research project. The
research was carried out by CWI, the
University of Amsterdam, and ID
Research. The goals of the project
included the development of a generic
renovation architecture, as well as
application of this architecture to actual
renovation problems.

Of the various facets of software
renovation – such as visualization,
database analysis, domain knowledge,
and so on – an enabling factor is the
analysis and transformation of legacy
sources. Since such source code analysis
has much in common with compilation
(in which sources are analyzed with the
purpose of translating them into assembly
code), many results from the area of
programming language technology could
be reused. Of great significance for
software renovation are, for example,
lexical source code analysis, parsing,
dataflow analysis, type inference, etc.

Program Transformations

Software renovation at the source code
level includes automated program
transformations for the purpose of step-
by-step code improvement. In this
project, we successfully applied
transformations to COBOL programs,
dealing with goto elimination, dialect
migration (between COBOL-85 and
COBOL-74) and modifications in the
conventions for calling library utilities.

To make this possible, we developed a
COBOL grammar, instantiated the
ASF+SDF Meta-Environment with this
grammar to obtain a COBOL parser and
pretty printer, and designed term
rewriting rules describing the desired
transformations. The resulting system is
capable of automatically performing the
desired transformations on hundreds of
thousands of lines of code, yielding a
fully automatic transformation factory.

Object Identification

At a higher level of abstraction, software
renovation includes the migration of
legacy code to architectures better
capable of meeting today’s requirements.
A typical example is the migration of
procedural COBOL code to object
technology. This is a process which
cannot be fully automated. Instead,
renovation tools will have to focus on
helping the human reengineer in
understanding the legacy system.

Thus, such renovation tools will have to
extract as much meaningful information
as possible from a legacy system,

14

PROGRAMMING LANGUAGE TECHNOLOGIES

showing it to the human reengineer in a
concise and usable manner. For the
purpose of object identification, this
information consists of the business data
items (candidate object attributes) the
programs or procedures performing the
key tasks (candidate methods) and an
overview of the combined use of these
(candidate classes). We were able to
develop heuristic techniques based on
cluster and concept analysis to extract
such class proposals automatically.

Conclusion

The overall result of the project is a
generic renovation architecture aimed at
program transformation and system
understanding. A specific instantiation
for COBOL has been developed, which
has been applied to various real life case
studies.

Pointers to publications with more
information can be found at:
http://www.cwi.nl/~arie/resolver/

■
Please contact:

Arie van Deursen – CWI
Tel: +31 20 592 4075
E-mail: arie@cwi.nl

Symbolic
Techniques
for Program
Analysis
by Henk Nieland

As a consequence of our ever
increasing dependence on the proper
functioning of software systems, the
need for proving their reliability has
to be taken serious indeed. Until
recently such proofs were only feasible
for systems whose size is far below
what is found in practice. Recently
developed techniques, however, may
offer a solution. The aim is now to
apply these techniques effectively, so
that real-life systems can be
successfully analyzed. By combining
mathematical rigour with manual

computation CWI developed methods
which can prove ‘beyond reasonable
doubt’ the reliability of software
systems of a realistic size.

In principle there are three approaches:
proof by manual labour, fully automated
proof techniques, and a mix between the
two. CWI has shown that the last way
enables the analysis of realistic systems.

Manual proof can be carried out in the
context of Process Algebra (PA). The use
of PA has advantages above other
verification methods such as modal or
temporal logic because of its high level
of abstraction and its composition
properties. A basic tool is the Cones &
Foci Theorem, which effectively can be
used to prove statements of the form:
Specification = Implementation. On the
basis of PA, CWI developed µC R L
(micro Common Representation
Language). The idea was to create a basis
for sharpening symbolic techniques,
rather than adding another language to
the repertoire. With µCRL one can carry
out proofs manually following strict
logical rules. In practice, however,
several such proofs remain ‘sloppy’,
because the manual method is effective
only for small systems, not exceeding
one page of code.

Fully automated proof techniques are
usually based on state automata. At CWI
now systems with 108 states can be dealt
with (in general the limit is 106), but
realistic systems are still considerably
larger. An even not really large system
such as the software used for the safety
of a small railway-yard, which was
recently analyzed by CWI using
propositional logic, consists of about
1 01 0 0 0 states. Of course, it is of the utmost
importance to find ways to reduce the
number of states. Our research indicates
that by transforming processes described
in µCRL to a normal form (Linear
Process Operation) using rewriting
techniques (automated induction, tree
automata), exponential reduction of the
number of states can be reached.

Since neither purely manual, nor purely
automated techniques can cope with
realistic systems, a compromise must be
sought. By using proof checkers, which
guarantees the required precision, in

combination with manual control, CWI
has reached promising results.
Experience with checkers like Coq, PVS,
and Isabelle, used in this way, shows that
this approach can be effective for middle-
sized systems. One may compare this
hybrid technique with the way packages
such as MATLAB and MAPLE are used
in mathematical formula manipulation.
This approach to putting formal proof
techniques to practical use may in due
course very well lead to a revolution in
mathematical argumentation, as was
foreseen already some thirty years ago
by the eminent Dutch mathematician
N.G. de Bruijn when he created his
Automath system.

Meanwhile several instances of faulty
software have been revealed by applying
formal proof checkers under manual
control. Recent Dutch examples include
the automated control system for the legs
of car lifting installations in garages, and
for the doors of the dam in the Nieuwe
Waterweg which protects the Rotterdam
area by closing the doors in case of flood.
Sincs many more such instances can be
expected to show up in the near future,
we may see before long the birth of a new
profession: that of software prover.

More information can be found at
http://www.cwi.nl/~jfg/

■
Please contact:

Jan Friso Groote – CWI
Tel: +31 20 592 4232
E-mail: JanFriso.Groote@cwi.nl

15

PROGRAMMING LANGUAGE TECHNOLOGIES

Security
Verification:
a Programming
Language
Approach
by Thomas Jensen

Electronic commerce with its use of
programmable smart cards and
payment via Internet must guarantee
the confidentiality and integrity of the
data involved in the transactions. The
ever-increasing presence of software
in these applications means that
verifying that this software conforms
to such security requirements becomes
an all-important task which is far from
trivial. The Lande research team at
IRISA (Inria-Rennes) studies formal
techniques for verifying security
properties of applications written in
the Java programming language and
its dialect Java Card, destined for
smart card programming.

A number of programming languages
incorporate facilities for rendering a
program secure eg, by protecting data
from unwanted access or by limiting the
capabilities of parts of code whose
behaviour cannot be trusted. Using a
high-level language to express the
security management in a program (as
opposed to relying on low-level or
hardware mechanisms) facilitates formal
reasoning about its correctness and opens
up the possibility of using well-
established techniques from
programming language semantics to
structure this reasoning. A recent
example is Java that comes equipped
with a complex security architecture
which includes visibility modifiers to
limit the accessibility of members of
classes, the use of class loaders to create
separate name spaces, granting of user-
defined permissions such as reading and
writing files, and dynamic checks that
the executing code has a given
permission.

The aim of our research is to develop
methods that allow to verify security
claims of such applications in a formal
manner. This involves two activities: the
formalisation of what a security claim is
and a semantic model of the Java security
architecture against which these security
claims can be checked. Our initial effort
has focussed on control-flow-based
security that for a given code traces back
in the execution history to discover on
whose behalf it is executing, in order to
check that those who originated the
current operation indeed have the right
to do so. Prior to verification, a program
is submitted to a type analysis that for
each (virtual) method invocation in the
program returns an approximation of the
set of concrete methods to which this
invocation can correspond – this results
in an approximate control flow graph for
the program. From this graph we derive
a transition system where the states are
call stacks and where transitions are
method invocations. The security
properties to verify are formalised using
a temporal logic that describes the
allowed paths that can be taken in this
transition system. The transition system
is infinite and we rely on a novel
reduction technique that for a given
property allows to restrict attention to a
finite part of the transition system in order
to verify the validity of the property. The
actual verification then becomes a
classical model-checking problem.

Ongoing research in the group aims at
extending these results in two directions.
First, the current method requires that all
of the program to verify must be present.
This is a limitation in a world where code
is loaded dynamically over networks. In
order to solve this problem we are
looking at how to modularise the various
static analyses involved. The aim is a
technique that for each unknown piece
of code derives a security interface, ie, a
security property that an imported piece
of code must satisfy in order to be loaded.
Second, we are in the process of applying
this technique to the Java Card language
for programming smart cards. Java Card
is derived from Java by removing a
number of language features that are too
costly and not strictly necessary to
implement on the resource-limited smart
cards (no multi-threading, no floating-

point values, no dynamic class loading
etc.). The security model is somewhat
different in that applications are
completely isolated and communicate via
explicitly shared objects. This activity is
conducted in collaboration with Bull via
the GIE Dyade between INRIA and Bull,
and in the INRIA-sponsored research
action Java Card, co-ordinated by the
Lande research team.

More information on the Lande team c a n
be found at http://www.irisa.fr/lande/.

■
Please contact:

Thomas Jensen – IRISA
Tel: +33 2 99 84 74 78
E-mail: Thomas.Jensen@irisa.fr

Deductive Proof
of Software
Properties
by Patrizia Asirelli
and Franco Mazzanti

The aim of an recently begun IEI
project is to experiment with the idea
that a deductive approach can
successfully be adopted to support the
verification of properties of programs
written in high level languages.

The use of high level languages (or
better, the use of safe subsets of them) is
being increasingly recommended by
regulating organisations and standards
for the development of critical software.
However, when we try to nail down a
precise definition of which properties
should be automatically verified during
the development process, we find a wide
set of alternative definitions of safe
subsets, different degrees of supported
automatic verifications, and few available
tools that might help the programmer (or
verifier) in his/her task.

Because of the intrinsic fluidity of the
problem (the same project might be
constituted by different fragments with
different criticality levels and for which
different sets of properties should be
guaranteed), we cannot claim that this

16

PROGRAMMING LANGUAGE TECHNOLOGIES

kind of verification should be performed
by the compiler, even if it actually needs
almost all the information usually
available to the compiler. The alternative,
with which we are now experimenting,
is to use a deductive environment, able
to make use of all the information the
compiler can gather on the program
under analysis, for expressing and
verifying the set of properties in which
we are interested.

The high level language being considered
in this project is Ada. This choice has

been made for several reasons. Ada
subsets are widely used for the
development of critical systems
(especially in the avionic/space field).
Ada is very suitable for developing
further advanced static verifications
because of the richness and intrinsic
safety of its type system. Ada comes with
a very important draft ISO standard
(ASIS) which defines a standard interface
allowing a compiler to export all its
knowledge on a program towards other
development tools. Finally, good quality
free development environments for Ada
exist and are widely used.

The deductive environment used by the
project is based on Gedblog, a deductive
database management system developed
at IEI and actively maintained. The Ada
compiler used in the project is the GNU
based GNAT compiler, and the ASIS
library is a prototype version developed
at EPFL (Ecole polytechnique fédérale
de Lausanne).

The approach with which we intend to
experiment in the project is the following.
First, given an Ada program we plan to

automatically build a logical database
containing all the basic properties of the
program itself, as provided by the Ada
compiler through its ASIS interface (the
program syntactic structure, the static
semantic relations between its
components, and whatever else might be
interesting to extract). This basic database
is enriched with rules expressing more
complex properties, usable by the verifier
to flexibly compose logical queries about
the program under analysis.

The project activity has just begun and
is currently in a preliminary study and
experimentation phase. If the results are
encouraging, we plan to continue the
activity with the verification of more
complex properties, like the absence of
particular classes of run-time errors, or
the full adherence to some particular ‘safe
coding guidelines’ (whose satisfaction is
too often still verified in a non
mechanical way). We are open and
looking forward to possible
collaborations with other ERCIM
partners interested in similar aspects.

■
Please contact:

Franco Mazzanti – IEI-CNR
Tel: +39 50 593 447
E-mail: {asirelli,mazzanti}@iei.pi.cnr.it

Certification
of Imperative
Programs in the
System Coq
by Jean-Christophe Filliâtre

The system Coq is a proof assistant
developed by the Coq team at INRIA,
so far used to formalize mathematics
and to prove the correctness of purely
functional programs. From now on, it
may also be used to establish the
correctness and the termination of
imperative programs (in fragments of
C, Pascal, or ML).

The Coq Proof Assistant (see ERCIM
News number 32) is a tool for
specification and formal proofs, based
on a highly expressive logic, the Calculus
of Inductive Constructions. Therefore, it
is naturally suited for mathematical
formalizations and proofs of purely
functional programs, since those are
already terms of the logic. But the
certification of programs is not realistic
without dealing also with imperative
programs, so a module of certification of
imperative programs has been recently
introduced in the system Coq.

The programs are given in an ML-Pascal
dialect mixing imperative features
(references, arrays, while loops,
sequences) and functional features
(functions as first-order objects,
polymorphism, recursive datatypes). They
are specified in a Floyd-Hoare logic style,
by insertion of logical assertions, such as
pre- or post-conditions or loop invariants.
Termination is justified by the insertion
of a pair variant/relation associated to each
loop or recursive function. Then an
automatic tactic takes a specified program
and produces some proof obligations,
whose validity implies both correctness
and termination of the initial program.

The method involved is based on a
functional translation of imperative
programs. Starting with an annotated
program, we first determine its effects
(access or modification of references or
arrays). Then, using this information, we

A small Ada program and a fragment of the corresponding logical database.

procedure MAIN is
 L: Integer;
 M: Integer;
 N: Integer;
begin
 if L = 0 then
 M := 10;
 end if;
 L := M;
 while L > 0 loop
 L := L - 1;
 end loop;
end ;

...
declaration(main_m_10_1,a_procedure_body_declaration).
first_body_declarative(main_m_10_1, main_12_1).
next_body_declarative(main_12_1, main_27_1).
next_body_declarative(main_27_1, main_42_1).
next_body_declarative(main_42_1, nill).
last_body_declarative(main_m_10_1, main_42_1).
first_statm(main_m_10_1, main_62_1).
next_statm(main_62_1, main_103_1).
next_statm(main_103_1, main_123_1).
next_statm(main_123_1, nill).
last_statm(main_m_10_1, main_123_1).
...

17

PROGRAMMING LANGUAGE TECHNOLOGIES

build a proof of its specification, whose
skeleton is a functional translation of the
imperative program which expresses its
semantics. This proof is of course
incomplete, and each ‘hole’ will
correspond to a proof obligation. Indeed,
this partial proof term is given to a specific
tactic which proves the specification by
generating a proof obligation for each
missing part of the proof term, in a way
similar to the type-checking conditions
(TCC) of the PVS system. It is important
to notice that this functional translation,
and the corresponding proof term, are
completely hidden. The user only sees
the specified program he gave, and the
resulting proof obligations. Then he can
use all the power of the proof assistant
to prove them. Once the proofs are done,
the programs can be pretty-printed in C
or ML code to be compiled and linked
in bigger applications.

This technology is already distributed
with the system Coq, and has been
applied on quite complex algorithms
(select, quick sorting algorithms, Knuth-
Morris-Pratt string searching, ...). The
interests of such an approach are mainly
the use of a highly expressive logic and
the use of a secure proof assistant with a
great experience in formal proofs.

There is still some work to be done to
reach a fully operational certification
environment for imperative programs. A
first improvement will be an extension
of the programming language, with an
addition of exceptions and other
imperative datatypes such as records for
instance. Another improvement, which
is essential, concerns modularity, since
there is no big software development
without a good notion of modules. So we
have to understand what is a good notion
of module with respect to specified
programs, and in particular what are the
visibility rules associated to those
modules.

For more information about the Coq
project and the certification of imperative
programs in the system Coq, see web site:
http://coq.inria.fr/

■
Please contact:

Jean-Christophe Filliâtre – INRIA
Tel: +33 1 69 15 64 53
E-mail: Jean-Christophe.Filliatre@inria.fr

Generating
Program
Generators
by Arne J. Glenstrup, Henning
Makholm and Jens Peter Secher

Research in semantics based program
manipulation has been carried out in
Copenhagen for more than a decade.
The DART project (a member of
ERCIM partner DANIT) is putting
theory into practice by deriving
program manipulation tools from
programming language theory. An
important instance is that program
generators (and generator generators,
etc.), can be produced automatically
and correctly from executable problem
specifications.

One of the main goals is to produce tools
that are automatic in the sense that once
instantiated by a user, they can be
repeatedly applied to widely varying
problem instances without further user

intervention. This semantic approach is
applicable to a wide range of areas:

• program transformation can be safely
performed, eg for instrumentation,
simplification, or translation

• optimisation by specialisation of
generic programs to specific tasks can
significantly reduce computational
overhead

• generation of compilers from
interpreters can be achieved
automatically.

Partial Evaluation

Partial evaluation is an automated source-
to-source transformation technique that
can be used to optimise generic software:
a program together with some known
portion of its input, is transformed into
a specialised version obtained by pre-
computing the parts of the program that
only depend on this input.

Usually when writing programs there is
a tradeoff between, on the one hand,
generic and easily maintainable programs
and, on the other hand, fast programs.
Partial evaluation bridges this gap, letting
you have your cake and eat it too: generic
programs are (automatically!) turned into
fast programs for specific problem
instances.

In a software development setting, a
generic, well-tested module can be taken
off the shelf and then specialised
automatically to a specific usage pattern,

thereby speeding it up. Since the
specialisation preserves the semantics of
the module, it is possible to produce both
reliable and efficient software.

Specialisation can be done quickly, and
this means that rapid prototyping and
production can be unified. As a side-
effect, some of the optimisation usually
done by hand can be done in an

Program
specialisation
with C-Mix.

18

PROGRAMMING LANGUAGE TECHNOLOGIES

automatic, application-independent way.
Furthermore, the original program can
be left untouched, so its structure and
readability can be retained.

Theoretical foundation: the Futamura
Projections describe the generation of
compilers from interpreters, avoiding the
error-prone task of writing a compiler by
hand. DART researchers were the first
in the world to transform these theoretical
ideas into practice by producing an
automatic compiler generator using these
principles. Compiler generation has
continued to be a focus point of DART
work in partial evaluation.

Partial Evaluators

The most sophisticated partial evaluators
today work with semantically well-
defined languages like Scheme and SML
(an example is Similix; see web address
below). The languages that are more
widely used in the software industry tend
to be less rigorously defined, but
nevertheless the understanding gained
by semantics-based techniques have
proved valuable in the development of
practically oriented partial evaluators like
DART’s C-Mix for the C language;
FSPEC for Fortran; and a partial
evaluator for Java that is under way in
the project.

There is an interaction and exchange of
ideas with INRIA. In Rennes, the
COMPOSE group develops the Tempo
Specialiser for C which complements C-
Mix by focusing on a very fast
specialisation process that makes it
possible to produce specialised object
code at run time.

Successful experiments have been carried
out in a number of settings, including ray
tracing, model simulations,
implementations of domain-specific
languages, numerical algorithms, and
compiling by specialising interpreters.

C-Mix: Partial Evaluation of C

C-Mix is an automatic partial evaluator
that specialises C programs that conform
to the ISO C standard. It takes a generic
program together with a classification of
the input and produces a specialised-

program generator. When this generator
is provided the portion of the input that
is known in advance, it will produce a
specialised program, as depicted in the
figure. When the specialised program is
run on the remaining input it produces
the same output as the original program,
only faster. Often, the same specialised
program is reused, resulting in significant
speedups in the running times.

The specialised-program generator is a
stand-alone program that can be used
without any knowledge about partial
evaluation.

C-Mix does a number of complex
analyses on the subject program – eg,
alias, liveness and binding-time analysis
– to calculate which constructs depend
on known input only. Using this
information, the specialised-program
generator can be produced.

C-Mix is available free of charge, and is
implemented with standard tools (GNU
C/C++ compiler and tools), which means
that it is highly portable (it runs on Unix-
like systems, Windows, DOS, etc.). It
has an HTML-based inspection toolkit
that provides the developer with the
results of the analyses, enabling fine-
tuning of the specialisation process. URL
h t t p : / / w w w . d i k u . d k / t o p p s / R e s e a r c h . h t m l
contains links to C-mix, Similix, and
various other DART activities.

The COMPOSE group in Rennes also
work on program specialisation and
provide a C program specialiser, see
http://www.irisa.fr/compose/.

■
Please contact:

Jens Peter Secher – DART
Tel: +45 35 32 14 08
E-mail: jpsecher@diku.dk

PROGGEN –
a Tool for
Automatic Code
Generation
by Therese Nilsen

ProgGen is a generic tool for
automatic code generation from any
textual design language. ProgGen was
developed by SINTEF, and the first
version came in 1992.

ProgGen has until recently only
supported SDL’92 and SDL’88 (more
exactly the textual representation and not
the graphical representation), but has
been extended to any language that can
be described using the BNF notation and
is of type LALR-1. ProgGen is a flexible
transformation tool which can be used to
produce customized code generators.

The code skeletons implement user-
defined strategies (or rules) for
transforming SDL or other design
language descriptions. By ‘strategy,’ we
mean that it is possible to implement a
design-language specific concept in
many different ways. Program code, but
also other kinds of output (makefiles, test
suites, documentation) can be generated.
You do not need to develop new code
skeletons for each new application; it is
not necessary if the implementation
strategies remain unchanged, or if the
generated code is platform independent
(generic). We can provide customers
with help for developing skeletons.

ProgGen has been used for some years
by several industrial users in Norway
(Stentofon, Alcatel) and elsewhere
(Alcatel Bell). Existing applications of
ProgGen include a variety of code
generators for the programming
languages C, C++, CHILL and ADA.
The tool is fully flexible and other target
languages (eg Java) are also possible.

ProgGen is implemented in C, and will
run on any platform with a C compiler,
support for the portable C library, and
adequate main memory for storage of the

19

PROGRAMMING LANGUAGE TECHNOLOGIES

internal representation of the SDL model.
We deliver ProgGen for UNIX based
workstations. However, existing users
have also installed it on PCs and
VAX/VMS.

These days we are working with a project
to extend ProgGen to allow for
information about implementation design
and let this information control the
transformation. We wish to demonstrate

that implementation design can be
separated from application design. The
advantage with this approach is the
possibility to use one implementation
design specification on different
application specifications. Likewise,
different implementation design
specifications can be used with one
application specification.

More information on ProgGen a t :
h t t p : / / w w w . i n f o r m a t i c s . s i n t e f . n o /~prog
gen/main.html

■
Please contact:

Therese Nilsen – SINTEF
Tel: +47 73 55 0359
E-mail:
therese.nilsen@informatics.sintef.no

MAP: a Tool
for Program
Derivation
based on
Transformation
Rules
and Strategies
by Alberto Pettorossi, Maurizio
Proietti, and Sophie Renault

Since 1987 the Department of
Informatics of the University of Rome
Tor Vergata and the IASI Institute of
the National Research Council (CNR),
Rome, have been cooperating on the
development of techniques and tools
for automatic program derivation and
validation. This work has used a
transformation methodology based on
the so-called ‘rules + strategies’
approach.

The basic idea for this approach goes
back to the seminal papers by Burstall-
Darlington in 1977 (for the case of
functional programs) and Tamaki-Sato
in 1984 (for the case of logic programs).
These papers show how a given
specification, written as a set of recursive
equations or a set of Horn clauses, can
be transformed into an efficient program
by applying suitable transformation rules
which are guaranteed to preserve the
intended semantics. The application of
these rules should be guided by suitable
strategies that, for some classes of initial
specifications, allow us to derive efficient
programs.

We are currently developing a tool, called
MAP, to support the interactive
derivation of logic programs by means
of transformation rules and strategies.
The MAP system has been implemented
in SICStus Prolog and its graphical user
interface has been developed using
Tcl/Tk.

At present the MAP system provides a
menu with a set of predefined

transformation rules which include:
definition introduction, definition
elimination, unfolding, folding, goal
replacement, generalization, and case
split. If suitable conditions are satisfied,
these rules preserve the least Herbrand
model semantics.

In MAP the programmer also has a menu
with a set of predefined strategies, ie,
sequences of applications of
transformation rules. Strategies are
needed to derive programs with specific
syntactic properties, such as: tail
recursion, linear recursion, absence of
existential variables and unnecessary data
structures and absence of redundant
nondeterminism. These syntactic
properties make the derived programs
very efficient in time and space.

The program derivation process requires
some theorem proving capabilities. In
particular, in order to apply the goal
replacement rule we need to show the
equivalence between a new goal and one
to be replaced. For instance, during
program derivation we may need to use
the associativity of list concatenation,
which is expressed by the goal
equivalence:

Formulas of this type can be proved off-
line and all equivalences can be stored
in theories which represent our
knowledge about the predicates used.
The MAP system allows the programmer
to create, load, update, and store theories
which may be useful for the derivations
at hand.

MAP keeps track of the history of the
program derivations, and provides the
user with some facilities for backtracking
to previous programs and exploring
alternative derivations. In MAP, program
derivations can be operated on by, for
instance, loading, editing, printing and
saving them, and programs, theories, and
histories can be restored.

We are planning several enhancements
to the current system. We would like to
improve the ease of interaction with the
user by providing more powerful
graphical tools for navigating through
the tree of alternative program

ProgGen and its environment.

Legend:
: Sequential

text files
: Executable

programs

Application

specification

ProgGen

Target Code

Error Report

Code
Skeletons

Implementation

specification
design

design

20

PROGRAMMING LANGUAGE TECHNOLOGIES

derivations. We would also like to be able
to extract program derivations and to
reuse them for deriving in a (semi-)
automatic way new programs from
similar initial specifications.

We are currently working to extend the
system to other languages, and in
particular, to: general logic programs
with negation, constraint logic programs,

and functional programs. We are
developing libraries which allow the user
to load several sets of predefined rules,
strategies, and theories into the system.
We also plan to design languages that
enable the users to define their own rules
and strategies, so that the system may
work as a generic, programmable
program transformer.

In addition, we intend to include modules
to support automated theorem proving
and program analysis. The future MAP
system should be able to exploit the
information produced by these modules
for performing very powerful program
transformations whose applicability
conditions may depend on the specific
properties of the programs at hand.

As already indicated in the literature,
there are various applications of program
transformation within the field of

machine-supported software production,
reuse, and validation for which the MAP
system could be a useful supporting tool.
Among these applications, we should like
to mention program specialization,
program synthesis, and program
verification.

Our research is currently supported by
the Italian Ministry for the Universities

and Scientific and Technological
Research and by CNR. More information
is available at:
h t t p : / / w w w . i a s i . r m . c n r . i t / ~ { a d p , p r o i e t t i }

■
Please contact:

Alberto Pettorossi – University of Rome -
Tor Vergata,
Maurizio Proietti – IASI-CNR
Tel: +39 06 7716426
E-mail: {adp,proietti}@iasi.rm.cnr.it

Sophie Renault – Université de Montréal
E-mail: renault@IRO.UMontreal.ca

Vanilla: Towards
more Modular
Programming
Languages
by Simon Dobson

The emergence of the Internet as a
commercial force is now well under
way. A particularly powerful business
model is the notion of a ‘virtual
enterprise’, a temporary alliance of
companies brought together to exploit
some transient market opportunity.
Such systems typify a class of
applications in which a set of
components must be composed in a
highly dynamic manner. As well as the
obvious correctness issues, it is clear
that notions such as webs of trust, role-
based interactions and on-the-fly
adaptability are neither properly
understood nor well supported by
current programming language
technologies.

Trinity College Dublin has a long-term
interest in very large-scale distributed
systems. We felt that there was a need to
experiment rapidly with novel language
constructs for component composition,
object re-use models and non-standard
type checking. We were also concerned
by the change in programmer
demographics away from dedicated
programmers happy with mainstream
languages and towards domain specialists
needing targeted, high-level scripting
languages in which to write their own
applications. Traditionally, programming
language research has had an
unacceptably high barrier to entry. A tool
such as compiler or interpreter is a large,
complex software system, which is
difficult to understand and modify. T h i s
makes it difficult to experiment with minor
changes to full languages, or to create
‘bespoke’ domain-specific languages.

The Vanilla project applies component-
based program composition to the
construction of the language tools
themselves. Vanilla allows the language
designer to construct a language by
combining a number of components (or

Interactive program derivation using MAP.

21

PROGRAMMING LANGUAGE TECHNOLOGIES

‘pods’), each of which captures the
syntax, type-checking and behaviour of
a single language feature. A typical pod
might define a feature such as the integers
with a particular concrete syntax for the
numbers and operators, a parser to the
corresponding abstract syntax, a type
checking component to ensure the type-
correctness of programs and an
interpreter component to evaluate the
expressions. The individual components
may be changed independently, for
example allowing a new concrete syntax
to be defined while re-using the existing

types and behaviours. New features may
be defined in isolation before being
combined with other features to create
the final language. This incremental,
experimental approach greatly reduces
both complexity and development times.

A common design pattern used within
Vanilla (shown in the figure) allows
components to express an interest in one
or more abstract syntax tree node types.
On encountering such a node the system
walks the chain of interested components,
allowing each in turn to either deal with
the node, determine an error condition,
or ‘pass’ the node to the next component
in the chain.

We have constructed a number of standard
pods covering a large portion of the
language design space – including
procedural, functional, object-oriented and
‘typeful’ language features. It turns out
that many features are orthogonal to each

other, so (for example) it is possible to
define object types without committing to
exactly what types may compose the
members. This makes for some interesting
generalisations to well-known concepts.

Of particular interest are the pods
handling network interactions, for
example with CORBA objects. We use
a component-based mapping between
Vanilla and CORBA IDL, which allows
applications to access objects on the
Internet with the absolute minimum of
additional code. Moreover, by

completely separating the protocol
handlers from the rest of the application,
we allow the same code to be used
simultaneously via a number of different
protocols (CORBA, DCOM, event-based
models etc). This radically simplifies the
construction of applications in highly
heterogeneous environments.

We are currently using Vanilla to explore
four complementary language areas:
mobile objects and agents, novel object
composition patterns, dynamic
construction of applications based around
XML document, and scripting languages
for describing interactions with
intelligent buildings. More information
on the Vanilla project at
http://www.cs.tcd.ie/Virtues/Vanilla/

■
Please contact:

Simon Dobson – CLRC and Trinity
College Dublin
Tel: +353 1 608 2224
E-mail: simon.dobson@cs.tcd.ie

Dynamic
Translator
Development:
Modelica in the
Python TRAP
by Thilo Ernst

Modelica is the new unified, object-
oriented description language for
dynamical models of physical systems
developed in an international effort in
which GMD co-operates. GMD is
developing a Modelica translator for
integration in the Smile dynamic
simulation environment. The Python
language which is used as an
integration platform in Smile, together
with associated tool components also
proved to be a powerful basis for
translator development. By its
combination of very high level of
abstraction, interpreted execution, and
ease of extensibility, Python enables a
new development methodology also for
language processors; with reference to
generic simulation environments, it
provides a unique foundation for R&D
in dynamic model evolution.

Modelica (http://www.modelica.org) is
a unified language for dynamic models
of complex physical systems being
developed in international effort
(formally, a combined EUROSIM
technical Committee/SCS Technical
Chapter) in which GMD participates (see
also ERCIM News Number 32). Smile
(http://www.first.gmd.de/smile) is an
object-oriented dynamic simulation
environment developed by Technische
Universität Berlin and GMD. In its latest
revision, it heavily builds on Python as
an integration platform for both external
and internal software components. G M D
is developing a prototypical Modelica
compiler component for integration into
Smile. The Modelica processor is intended
to be open, extendible, and reusable.

Python (http://www.python.org) is an
interpreted, object- oriented language
often referred to as a ‘scripting’,
‘extension’ or ‘glue language’, as it is

Common design pattern used within Vanilla.

22

PROGRAMMING LANGUAGE TECHNOLOGIES

well-suited and popular as a framework
for integrating software components
across diverse implementation languages
and programming paradigms. However
beyond that, Python is a full-fledged,
platform-independent, modern
programming language. Python offers
powerful features such as classes,
modules, exceptions, dynamic typing and
very high level collection data types in a
concise, regular and very readable syntax.
The language’s high level of abstraction
and (byte-code-)interpreted execution
provide an outstanding development
efficiency. Performance bottlenecks can
easily be identified and can be effectively
attacked by ‘extensions’, ie optimised
low-level (C/C++) re-implementations
of the (typically small) code parts in
question. This enables a very efficient
rapid prototyping/rapid application
development (RP/RAD) methodology.
The Python language and software
package are free and not subject to legal
restrictions hampering any kind of
application. Python is mature and
reliable, and (thanks to a large and active
user community) a huge collection of
library components written in or
interfaced with Python exists, for the
most part free like Python itself.

Using Python for translator implemen-
tation was a rather obvious idea in the
project setting described above, as a
Python interface between the Modelica
translator and the Smile-internal equation
system data structure was planned
anyway. Therefore this option was
evaluated in more detail. It turned out that
the language has a set of features that very
effectively can be exploited to approach
common data structure and algorithm
patterns found in compilers. For instance:

• Python offers sequence types (lists and
tuples) and their standard manipulation
methods as built-ins. List manipulation
is sufficient to implement algorithms
based on incremental set manipulations,
which are ubiquitous in compilers.

• Python’s object model and extension
concept make it easy to work with sets
or graphs of objects (that represent any
semantically relevant information)
using a class library, and later on
transparently migrate to a more efficient
bitset implementation.

• Python’s dictionary datatype can be
used to represent arbitrary mappings
between Python objects. Mappings
occur frequently in compilers as well:
name space and symbol table both refer
to mappings (on different levels of
abstraction).

• Python’s object model can be
effectively used for object oriented
compiler techniques, eg representation
of abstract syntax tree (AST) node sorts
by a class hierarchy in which standard
functionality (eg tree traversal

according to the visitor design pattern)
is packaged. Python is not statically
typed, but has a dynamic type system
which can be easily used to enforce
compiler-specific constraints, eg local
wellformedness constraints for AST
nodes can be checked in the node
constructors.

• Python, by integrating concepts from
both worlds in one language, also allows
the user to choose the right mixture of
functional and imperative programming
adapted to the task at hand.

• Python uses a reference-counting based
automatic memory management
scheme hidden from the user: Objects
can be simply created without caring
about the memory allocation that is
automatically happening; objects are
silently reclaimed as soon as they are
no longer referenced.

The transformation phase of a translator
is where these advantages can be best
exploited; lexical and syntactical analysis
of the source text have to be done

already. Fortunately, front-end tool
components (scanner and parser
generators) already were available as
Python modules, so only a thin layer of
tooling needed to be added to obtain a
small, but sufficiently powerful Python-
based development environment called
TRAP (Translator RApid Prototyping)
for building a Modelica translator. TRAP
takes a compiler description consisting
of an EBNF-style grammar specification
(enriched with semantics actions
expressed by pieces of Python code

Example constructs of the TRAP description.

compiler SimpleMod

comment syntax of language processed
comment r'//.*$'
comment r'/*.**/'

lexical tokens
tokx`zNT '[A-Za-z][A-Za-z0-9_]*' # default semantics: matched text

token INT_CONST '[0-9]+':
string.atoi(str) # explicit semantics: convert to IntType

grammar: nonterminals with rules & semantics
nterm primary

default: pass through constituent's semantics
<- INT_CONST
<- "time"
<- "false"
<- "true"
<- component_reference
<- "(" expression=E ")":

E # explicitly pass through semantics of E

nterm name::[] # type constraint: Python list
<- ["." IDENT+] # non-optional repetition with separator "."

automatic semantics: list of strings

nterm class_definition::Mclass # type constraint: a node class
<- class_key=C IDENT=i1 Mcomment=K (component*)=T "end" IDENT=i2 ";":

if i1 != i2: # a simple semantics check
ERR("Name mismatch:", i1, "/", i2)

Mclass(C, i1, K, T) # construct AST node as semantics value

abstract syntax: a node type definition
Mclass (

key, # default field type: StringType
name,
Mcomment,
components::(component) # type: Python tuple of 'component' nodes

)

23

PROGRAMMING LANGUAGE TECHNOLOGIES

attached to the production rules) and a
concise hierarchical description of AST
node sorts. In addition, type constraints
for non-terminals and fields can be
specified. From this, a (Python) c o m p i l e r
frame module is automatically generated,
providing scanner, parser, the set of node
class definitions with standard method
instrumentation (printing, dynamic
typecheck, traversal, pattern matching)
and some auxiliary code. That way,
source code of the language to be
processed is easily converted into Python
data structures; subsequent transformations
are implemented directly in Python. The
figure presents sample snippets from a
compiler description.

Modelica can be categorised as a special-
purpose language of medium complexity.
TRAP of course should be generally
useful for building translators for such
languages. Indeed, it was already used
for bootstrapping itself. However the
emphasis here is not on building yet
another compiler tool – TRAP mainly
integrates relevant concepts from existing
toolkits such as Cocktail, Gentle, and
PCCTS. The important point is that this
integration was done in the open,
dynamic framework provided by Python.

In the context of processing Modelica,
expressing semantics transformations in
Python is more than merely convenient -
this approach indeed provides a unique
foundation for further R&D in generic
modelling and simulation: Currently, most
generic simulation systems have a rigid
separation of compilation vs. Simulation
phase. However, for certain application
classes, it would be desirable to change
structure and/or details of the model being
worked on during simulation. With a
Python-based, dynamic Modelica
translator, (re-)doing semantically
complex model transformations at
simulation time poses no technical
problems. A fully dynamic modelling and
simulation system architecture in which
concepts like dynamic model evolution
can be conveniently investigated is an
important area of future work.

■
Please contact:

Thilo Ernst – GMD
Tel: +49 30 6392 1919
E-mail: Thilo.Ernst@gmd.de

New Language
on the Block:
Java for High-
Performance
Computing?
by Mike Ashworth

The Java language is not only an
emerging new technology in Web-
based computing, but is starting to
have a considerable influence in many
IT-based science and engineering
application areas. For example, it is
emerging as a serious contender for
use in High Performance Computing
(HPC). At the CLRC Daresbury
Laboratory, we are developing a multi-
language approach in which Java is
used as a front-end to existing HPC
programming environments. This
allows the utilization of high-
performance legacy Fortran and C
codes within a Java wrapper that
facilitates the construction of
Graphical User Interfaces (GUI) and
access to Web-based client-server
computing.

The Java language was designed by
James Gosling at Sun Microsystems
starting in 1990. It was first intended as
a new language for embedded systems
in consumer microelectronics, which led
to the basic design features of Java: it is
simple, object-oriented, architecture
neutral, robust, secure and extensible. In
1993, as the World Wide Web was
developing to a more graphically oriented
interface, the Java team realised that Java
also had ideal qualities for Web-based
applications. Java has some similarities
with C++, but it is much simpler. Many
of the more advanced features of object-
oriented programming, such as operator
overloading, pointer arithmetic and
multi-dimensional arrays, were left out.

How does Java work?

Java source is compiled to class files that
contain machine-independent byte-code.
This is like machine code in form but is

not specific to any particular hardware.
When a Java enabled client, such as
Netscape or Internet Explorer, accesses
a page containing a Java applet (a small
Java application embedded in a Web
page), the byte-code is downloaded and
runs on the client’s own hardware using
an interpreter known as the Java Virtual
Machine. Because Java is compiled to
byte-code, it can run on any platform for
which an interpreter has been written.
Java is small so it can run efficiently on
anything from PCs upwards, and the
interpreter takes only a few hundred
kilobytes.

Java and High Performance
Computing

Java is more efficient than other scripts,
but it is still very slow compared to
traditional languages. Even if compiled
to native machine code, there are features
in the language that make it currently
impossible for native Java compilers to
apply the normal optimizations which
allow Fortran and C programs fully to
exploit the hardware of state-of-the-art.
For example, security considerations in
Java demand that all array references are
checked for out-of-bounds indexes at
run-time, which effectively kills
performance for computational loop
kernels. Experiments at IBM have shown
that if this checking can be performed at
compile-time and the compiler is allowed
to make other optimizations, Java code
improves from 1% of Fortran to 80-
100%.

Vendors, software developers and
computer users in the US have formed a
group known as Java Grande, which
believes that Java has the potential to be
a better environment for HPC than any
previous language. The Java Grande
Forum aims to develop a consensus for
the use of Java for Grande applications
and to make recommendations for
changes to the Java standard and for the
establishment of standards for libraries
and services. Interest is also growing in
the UK. The First UK Workshop on Java
for High Performance Network
Computing was held at Euro-Par ‘98 in
Southampton in September 1998. There
are currently moves to form a UK Java
Grande Forum similar in style to the US

24

PROGRAMMING LANGUAGE TECHNOLOGIES

Forum, but with a greater emphasis on
the services and tools required by high
performance applications.

Java, HPC and the Web

The World Wide Web was conceived as
a means of accessing information, but it
is increasingly evolving towards a means
of providing services. A major sea
change is happening on the Internet, due
in no small part to the emergence of the
Java programming language. Java is
expanding rapidly and comes complete
with a wide range of class libraries and
toolkits for Web access, thread based
computing and GUIs.

Although the popular image of the Web
has been as a global information
provider, this has not been its only
manifestation. Increasingly,
organisations are setting up an Intranet -
a corporate Web server providing internal
information and services. In an industrial
R&D environment, the Intranet may
enable access for everyone in a
department to the technical designs and
specifications of a new product together
with the project specifications,
modification records, test procedures,
test results, marketing information etc.

It is in this environment that we see the
major benefits of integrating Java, with
its support for Web-based computing,
with traditional high-performance
programming using Fortran and C. This
vision is of a new type of multi-language
multi-paradigm programming
environment for high performance
applications which makes use of
innovative Web-based and GUI
technologies provided by Java and
provides a high performance and simple
API and a high level of portability and
flexibility for large-scale applications.
It emphasises the strengths of each
component: Java allows easy access to
Web-based computing and facilitates the
construction of GUIs; Fortran and C
allow large-scale applications best to
exploit high performance hardware.

■
Please contact:

Mike Ashworth – CLRC
Tel: +44 1925 60 3663
E-mail: M.Ashworth@dl.ac.uk

A Formal
Semantics and
an Interactive
Environment
for Java
by Isabelle Attali

Being both object-oriented and
concurrent, the Java model features
interrelated aspects that are critical
for the understanding of an
application: objects, static variables,
threads, locks, etc. We want to know
how to visualize the various entities
that participate in the execution of a
Java program.

These concepts are not easy to
understand and to handle for a
programmer, nor easy to formally
describe from a designer point of view.

We address these questions using a
formal description of the syntax and the
semantics of the Java language (useful
for language designers and
implementers), and as well as an
interactive development environment
(useful for programmers). We are using

a powerful generic interactive
environment named Centaur
(h t t p : / / w w w . i n r i a . f r / c r o a p / c e n t a u r /
centaur.html). Centaur produces a
programming environment, dedicated to
a given language, from a formal
description of the language.

This research started in spring 1997 with
Denis Caromel (Professor at University
Nice - INRIA Sophia Antipolis - CNRS)
and Marjorie Russo, PhD Student), and
is pursued at INRIA Sophia Antipolis.

The topology of instance variables within
an object-oriented system can be rather
complex. Are they mainly trees? Are
there DAGs? Are there cycles, and
where? Those are important questions
for understanding an application. How
can a programming environment provide
that information to programmers in a
simple and effective manner, without
requiring them to compare reference
values within a text-only debugger?
Static variables raise special concerns,
as they can be accessed from objects
without an explicit reference to them.

When it comes to multi-threading and
concurrent accesses, that information
becomes even more crucial. How can we
effectively visualize the objects shared
by a given thread? Are there any
recursive calls, either directly or through

View of the Java graphical environment.

25

PROGRAMMING LANGUAGE TECHNOLOGIES

cycles? Do several threads access a single
object at the same time?

We provide solutions to those problems
and demonstrate them in an interactive
and graphical environment (shown in
following Figure and also at
http://www.inria.fr/croap/java). It allows
us to visualize objects and thread
activities at execution in both a textual
and a graphical manner, eg, the topology
of the object graph (trees, DAGs, cycles),
thread activities and status, locks, and
synchronizations. Synthetic views give
relevant information on status of objects
and interaction between objects and
threads.

Using the Centaur system, this graphical
environment is derived from an
executable operational semantics of Java:
execution a Java program is, in fact, an
interpretation of the semantics with the
program source as data (there is no byte-
code, and no virtual machine is required).
Animation of the various views is
performed by messages from the
semantics interpreter to the visualization
engines (textual and graphical) in order
to show, during execution, the changes
in the structures. No instrumentation is
required from the programmer.

We do not want to compete with
commercial systems for Java
development. Instead, we propose two
main concepts which can then be
exploited within any Java environment:

• graphical visualization of the object
graph topology

• interactive symbolic debugging (no
(re-)compilation is necessary).

Future activities include the following
directions:

• allow user-control of the interleaving
between all threads

• gain in scalability, with an abstract
view of the object graph

• benefit from the formal definition the
ability to perform formal verification
of Java programs.

Related Projects

With Denis Caromel and Carine Courbis
(PhD Student), we recently started a

related research project. Our goal is to
facilitate smart card programming using
Java Card, a Java subset that deals with
limited resources (http://www.inria.fr/
croap/javacard).

Finally, with Denis Caromel and Romain
Guider (PhD Student), we are also
investigating the use of static analysis,
based on abstract interpretation, for
distributed and parallel programming in
Java. For this work, we utilize the product
of another related research project: the
ProActive PDC Java Library (formerly
Java//, Java Parallel), a Java library for
seamless sequential, multithreaded and
distributed programming using Java
(http://www.inria.fr/sloop/javall). See
also http://www.inria.fr/croap/java.

■
Please contact:

Isabelle Attali – INRIA
Tel: +33 4 92 38 79 10
E-mail: Isabelle.Attali@sophia.inria.fr

Formal
Underpinnings
of Object
Technology
by Juan Bicarregui

Object-Oriented Analysis and Design
notations, such as UML, are rapidly
becoming the mainstream industrial
approach to the development of
software. They include a range of
techniques for a wide spectrum of
software engineering tasks from
domain modelling to implementation.
However, such techniques are
generally without a formal
interpretation which is essential for
rigorous development as required by
applications in critical areas, such as
medical database and robotic systems,
defence and chemical process control.

In collaboration with Imperial College,
London, and Brighton University, we are
developing a compositional formal
interpretation of object model and
statechart diagrams as used in OOA\&D

notations. We interpret diagrams as
logical theories in the Object Calculus
(Fiadeiro and Maibaum 1991). Separate
theories are constructed for separate
diagram components such as object
instances, class managers and
associations which are then combined
with categorical constructions to yield a
modular definition of a whole system.

For example, the interpretation of an
object class is constructed by taking the
co-limit of theories for instances of the
class and a general manager theory which
handles the creation and deletion of
instances. Associations are interpreted

by bringing together the theories of the
associated classes with a general theory
for associations via link theories that
‘glue’ the identifiers of the associated
theories with that of a generic association.
Annotations such as cardinality or
aggregation constraints are interpreted
as axioms in the co-limit theory. In this
framework, aggregation and subtyping
can be seen as special cases of the general
concept of association.

The Object Calculus defines a notion of
locality which ensures that only actions
local to a particular theory can effect the
value of the local attributes. Locality is
a logical counterpart to object-oriented

Two classes related by an
association and their interpretation.
Theories for instances of the two
classes, Ai and Bi, are combined
with general class manager theories,
MA and MB, to give the theories of
the classes, A and B. A general
theory for associations, Ass, is
combined with the class manager
theories via linking theories, @X,
which relate the identifiers. The
interpretation of the whole diagram,
D, is the co-limit of the
interpretations of the diagram parts.

26

PROGRAMMING LANGUAGE TECHNOLOGIES

data encapsulation and the work has led
us compare these two principles.

The formalisation has been used to justify
some common transformations of class
models such as those presented in the
UML literature. By providing a
semantically-based transformation
calculus it is possible to obtain many of
the benefits of formal methods without
the need for users to reason directly in
mathematical formalisms.

The incremental approach to the
interpretation of diagrams makes the
formalisation suitable as a basis for a
support system which would provide a
formal basis for the validation and
verification of system specifications.

■
Please contact:

Juan Bicarregui – CLRC
Tel: +44 1235 44 6648
E-mail: jcb@inf.rl.ac.uk

The JoCaml
System:
a Language for
Programming
on the Internet
by Sylvain Conchon, Fabrice
Le Fessant and Luc Maranget

The JoCaml system is an experimental
extension of the Objective-Caml
language with the distributed join-
calculus programming model. This
model includes high-level
communication and synchronising
channels, mobile agents, failure
detection and automatic memory
management. JoCaml enables
programmers to rapidly develop
distributed large-scale applications,
obtaining both the Objective-Caml
ease of programming and extended
libraries, and the join-calculus
distributed and concurrent features.
It can already be viewed as the next-
generation Internet programming
language.

Distributed programming languages can
be divided in two opposite kinds:
concurrent calculi (CSP, CCS, pi-
calculus, etc) and practical languages
(JAVA RMI, DCOM, CORBA, Actors,
etc). Concurrent calculi try to catch the
formal basics behind distributed parallel
programming, but are hardly
implemented in really distributed
platforms. Practical languages are heavily
used, but lack formal specifications.

The PARA project at INRIA adopts both
views. We thus designed a formal
process calculus: the join-calculus and
built practical implementations of
programming languages based upon the
join-calculus. We also made the
significant effort of releasing tutorials
and manuals.
Two implementations are currently
available: the distributed join-calculus
and the JoCaml system. In this note, we

focus on the second, more efficient, and
more promising implementation. Work
on the first implementation is now frozen
and it thus may serve as a stable platform
for developing small distributed
applications.

After a first development effort of six
months, JoCaml has been made available
on the World-Wide Web in May 1998 at
a beta stage. New beta releases have been
distributed more recently with enhanced
distributed garbage collection, and a final
release will be made in a few months
when failure detection is terminated.

JoCaml’s programming model contains
useful communication abstractions, such
as high-level point-to-point channels,
mobile agents and remote method
invocations. Spaces and agents are
uniformly organized in hierarchical trees,
with failure detection and possible

Figure 1: A postscript viewer
service: The server code registers in
the name-server a high-level RPC for
a postscript file viewer service
(whose code is in the
PostscriptViewer Objective-Caml
module). The client calls the RPC
when a postscript file must be
viewed. The first time (init state), the
server is queried, and a mobile
agent carrying the postscript viewer
code migrates to the client. Other
invocations are immediately sent to
the already received mobile agent.

Client ---------------------------

let def view ps | init! () =
let get_ps_viewer = Ns.lookup

"ps_viewer" vartype in
get_ps_viewer (top_location,ack);
view(ps)
or view(ps) | ack!(viewf) =
{viewf(ps);reply} | ack(viewf);;

{| init () };;

view "paper1.ps";
view "paper2.ps";;

Server --------------------------

let def get_ps_viewer (site,ack) =
let loc ps_viewer

[PostscriptViewer] do
{ go(site);

ack(PostscriptViewer.view) }
in reply;;

Ns.register "ps_viewer" ps_viewer
vartype ;;

Figure 2: A naval war server: The
server contains the player class and
a definition for high-level channel.
The definition waits for the first
player, then for the second player,
then creates two objects that
migrate to the respective player
locations. At the end, the server has
gone back to its initial state, and the
players are autonomous.

Server --------------------------

Definition of the player class
with two methods:
goto: location -> unit
play_with : player -> unit

...

let def naval_war!(l,nom)
| wait_first!() =

{ wait_second(l,nom) }
or

naval_war!(loc1,nom1)
| wait_second!(loc2,nom2)=

let p1 = new player nom1
and p2 = new player nom2 in
{ p1#goto(loc1);

p1#play_with(p2);}
|
p2#goto(loc2);

|
wait_first () ;;

{| wait_first () };;

Ns.register "naval_war" naval_war
vartype;;

Client ---------------------------

let war = Ns.lookup "naval_war"
vartype in

{|war(top_location,''my name'')}

27

migration of whole branches. This
distributed model is embedded in the
Objective-Caml language, with its full
type inference and complete static type-
checking with global lexical scope. All
Objective-Caml programs and libraries
can be compiled to be used in Jocaml
programs.

The current JoCaml system contains the
Objective-Caml distribution, version
1.07, with a modified compiler, a
modified runtime system, the ‘join’ extra
library and several examples of
applications. Code migration is only
supported for bytecode modules
(modules are Objective-Caml code
entities), but both bytecode modules (for
migration) and native-code modules (for
efficiency) can be mixed in a single
executable. The JoCaml runtime also
provides automatic marshaling/
unmarshaling of all data types sent on
high-level channels, transparent remote-
pointer creation for channels, mobile
agents and objects, complete distributed
garbage collection using efficient
algorithms, dynamic type-checking at the
name server, and partial detection of
space crashes.

Future work will mainly aim at
improving failure detection and security
in both theoretical and practical aspects.
The first examples have also shown the
need for improvments in the design of
language constructs.

More information on Website:
http://join.inria.fr/

■
Please contact:

Sylvain Conchon, Fabrice Le Fessant and
Luc Maranget – INRIA
Tel: +33 1 3963 5801
E-mail: {sylvain.conchon,
fabrice.le_fessant, luc.maranget}@inria.fr

Modelling
Mobile
Applications
by Stefania Gnesi
and Laura Semini

There has been growing interest in
wide-area distributed applications in
recent years. A key concept for
structuring such applications is
represented by mobile agents, units of
executing code that can migrate
between sites.

At IEI-CNR we are currently working in
the area of mobile systems. We have
focused on those mobile applications that
are composed of a set of components
migrating among distinguished sites. In
these systems there is a dynamically
changing connection topology among the
system sub-components. Some typical
examples are: the cellular telephone
system, where a Mobile Station (the
telephone), moving through different
geographical areas, interacts with a cell
that is able to manage the communication
with the final receiver; and satellite
communication systems.

Most languages used to describe
applications in a distributed setting
provide an abstraction away from the
underlying architecture, ie, from the way
the application components are
distributed over a network and from the
way that the connections among the
nodes of the network are realized. The
advantages of this abstraction are
independence from all physical details
that are not relevant at the application
level, and better reasoning on the
program properties.

In particular, distributed, non-mobile
languages can provide constructs, usually
based on shared memory or on message
passing paradigms, for the synchronous
composition of the components of an
application. These constructs completely
abstract away from the component
allocations and from the way
synchronous communication is
implemented. In both cases, everything

should operate smoothly, ie, the
behaviour of the system will be correct
with respect to the definition of the
semantics, since it is reasonable to
hypothesise that, in general,
communication failures will not occur in
a distributed, non-mobile network. In
fact, it can be presumed that a run-time
support based on a non-mobile network
will hide the few communication failures
that can occur in these networks.

On the contrary, in a mobile architecture,
typically based on wireless
communications, the same hypothesis no
longer holds and no run-time system can
hide a lack of connection which can last
for hours.

Two solutions can be adopted to address
this problem:

1. The definition of languages to model
mobile applications that include a
synchronous composition construct. The
drawback in this case is that, at the
language level, the presence or lack of
physical connection among the
subsystems must be dealt with;
connections cannot be assumed to be
always on.

2. No synchronous communication is
permitted among distinguished mobile
entities, and applications are described
using asynchronous languages. Ignoring
synchrony, it is possible to describe most
applications without mentioning any
notion of connection, location, or
channel, ie, keeping the description
completely abstract with respect to the
underlying architecture.

We have explored this solution,
proposing a high level programming
language based on asynchronous
message passing. The language frees the
developers of a mobile application from
considering low level issues, and leads
to descriptions that are highly readable
and completely abstract from the physical
architecture of the underlying net. To
make our proposal effective, we have
shown how to implement the language
communication primitives when the
underlying architecture is a mobile one.

PROGRAMMING LANGUAGE TECHNOLOGIES

28

Together with modelling issues, it is also
important to define methods and tools
for the formal verification of mobile
systems in order to guarantee their correct
behaviour. Some work has been done
recently in this respect and a formal
verification environment, named HAL,
has been defined to check the
satisfiability of safety and liveness
properties of mobile systems modelled
as process calculi terms. HAL was used
in the formal verification of the core of
the handover protocol for the GSM
Public Land Mobile Network proposed
by the European Telecommunication
Standards Institute. The same
environment has been used to verify the
correctness of an implementation of the
GSM Short Message Service, a service
that provides an electronic postcard
service working over GSM, enabling the
sending and receiving of short text
messages among GSM phone users.

■
Please contact:

Stefania Gnesi – IEI-CNR
Tel: +39 050 593 489
E-mail: gnesi@iei.pi.cnr.it

The Mozart
Platform
for Distributed
Application
Development
by Seif Haridi, Christian Schulte
and Peter Van Roy

The Mozart system for distributed
application development has been
released in December 1998. The
system implements Oz, a concurrent
object-oriented language, and provides
comprehensive support for writing
fault-tolerant distributed applications.

The system is the fruit of a decade of
research into concurrent constraint and
distributed programming. The system
separates the issues of application
functionality, distribution structure, fault
tolerance, and open computing. The

language is fully network-transparent, ie,
an application obeys exactly the same
semantics, independent of its distribution
structure, which is specified separately
from the application functionality. The
system reflects distribution and fault
tolerance in the language, providing
abstractions that allow full control over
these issues from within the language.

The system has been developed as a
collaboration by DFKI, SICS, and UCL,
and includes a full-fledged development
environment with many tools. The
system also includes sophisticated
constraint and logic programming
abilities that are the subject of ongoing
research. The Mozart system is available
at http://www.ps.uni-sb.de/mozart and
http://www.sics.se/mozart.

Much progress has been made in
distributed computing in the areas of
distribution structure, open computing,
fault tolerance, and security. Yet, writing
distributed applications remains difficult.
This is because the programmer has to
manage models of these four areas
explicitly. A major challenge is to
integrate the four models into a coherent
development platform (see figure). Such
a platform should make it possible to
cleanly separate an application’s
functionality from the other four
concerns.

The Mozart platform is a first step
towards solving this problem. It is the

result of three years of research into
distributed programming and ten years
of research into concurrent constraint
programming. The current release
completely separates application
functionality from distribution structure,
and provides primitives for fault
tolerance and open computing, and
partial support for security. Future

releases will complete the separation for
fault-tolerance and open computing, and
increase support for security.

The Mozart platform implements the Oz
language. Oz appears to the programmer
as a concurrent object-oriented language
with dataflow synchronization. Oz
combines concurrent and distributed
programming with logical inference,
making it a unique choice for developing
multi-agent systems. From a theoretical
point of view, Oz is a concurrent-
constraint programming language that is
based on a new computation model
providing a uniform foundation for
higher-order functional programming,
constraint logic programming, and
concurrent objects with multiple
inheritance.

Several research groups at the DFKI,
SICS, and UCL are already developing
applications in Mozart. For example, the
DFKI is developing multi-agent
technology in the CoMMA-MAPS
project. Inside the Mozart project, we are
building collaborative tools including a

PROGRAMMING LANGUAGE TECHNOLOGIES

Integration of distribution structure, open computing, fault tolerance
and security into a coherent development platform.

29

shared graphic editor (Transdraw), a
virtual world infrastructure (Sonata), and
a corpus browser for large text corpora.
We have also built constraint applications
in industrial scheduling, computational
linguistics, and music composition. All
these applications have or are reaching
a substantial level of functionality. For
example, the Transdraw prototype
currently consists of 20,000 lines of Oz
and implements a coherent graphic editor
and whiteboard. Due to its transactional
architecture, it has high performance
even over very slow networks. It is fault-
tolerant and does full and automatic
remote loading of code and data.

The Mozart implementation includes an
interactive programming interface based
on Emacs (both GNU Emacs and
XEmacs are supported), an incremental
compiler, development tools (including
browser, interactive constraint visualizer,
parser-generator, profiler, and debugger),
an Internet-wide module system with
dynamic linking, persistent data
structures, an object-oriented interface
to Tcl/Tk, powerful interoperability
features including support for sockets
and a C++ interface for dynamically-
linked libraries, a distributed garbage
collector, and support for stand-alone
applications. Furthermore, extensive
libraries of constraint propagators
(including global constraints for
scheduling applications), distributors and
search engines support the construction
of intelligent applications. Performance
is competitive with commercial Prolog
and Lisp systems and better than
emulated Java. Mozart is available for
many Unix-based platforms and for
Windows 95/NT.

It is interesting to compare Mozart with
JDK 1.2, the current Java release. Mozart
distinguishes itself from Java in five
ways. First, Mozart provides true
network transparency – not a single line
of code has to be changed when changing
the distribution structure of an
application. Second, Mozart provides a
truly neutral network layer – it does not
make any irrevocable decisions when
there are temporary or permanent faults
with processes or with the network.
Third, Mozart is fully extensible at run-
time—one can for example upgrade the

interface of a remote object interactively
while the object is running and clients
are communicating with it. Fourth,
Mozart provides sophisticated constraint
and logic programming abilities and
tools. Finally, Mozart provides a much
more efficient implementation of
concurrency – it is literally possible to
create millions of threads within a
process.

Mozart is available at:
http://www.ps.uni-sb.de/mozart
and http://www.sics.se/mozart.

■
Please contact:

Seif Haridi – SICS
Tel: +46 8 633 1500
E-mail: seif@sics.se

Christian Schulte – DFKI
Tel: +49 681 302 5340
E-mail: schulte@dfki.de

Peter Van Roy – UCL
Tel: +32 10 47 83 74
E-mail: pvr@info.ucl.ac.be

Objective Caml –
a General
Purpose
High-level
Programming
Language
by Xavier Leroy, Didier Rémy
and Pierre Weis

Objective Caml is a general purpose
programming language that combines
functional, imperative, and object-
oriented programming. The language
is statically typed; its type system
ensures the correct evaluation of
programs. Types are automatically
inferred. The language offers powerful
constructions such as user-definable
data-types, the ability to define
functions by pattern-matching, and an
exception mechanism. Programming
in the large is facilitated by a full-
fledge class-based object-oriented
layer and an expressive module
system.

Objective Caml belongs to the ML
family of programming languages and
has been implemented at INRIA
Rocquencourt within the Cristal research
team. Since ML’s inception in the late
seventies, there has been a continuous
line of research at INRIA devoted to
implementations and improvements of
ML. Objective Caml owes a lot to the
original core ML language and to our
first Caml implementation (1985-1990).
A new byte-coded implementation called
Caml Light was developed in the early
nineties. The language Caml Light is still
in use, especially for education. The
language was renamed Objective Caml
after the incorporation of a sophisticated
module system and an object-oriented
layer.

As all dialects of ML, Objective Caml
possesses:

• first-class functions: functions can be
passed to other functions, received as
arguments, or returned as results

• a powerful type system with parametric
polymorphism and type inference:
functions may have polymorphic types;
it is possible to define a type of
collections parameterized by the type
of the elements, and functions operating
over such collections; for instance, the
sorting procedure for arrays is defined
for any array, regardless of the type of
its elements

• user-definable data-types and pattern
matching: the user can define new
recursive data-types as a combination
of record and variant types; more
importantly, functions over such
structures can be defined by pattern
matching: a generalized case statement
that allows the combination of multiple
tests and multiple definitions of parts
of the argument in a very compact way

• exceptions for error reporting and non-
local control structures

• automatic memory management.

In addition, Objective Caml features:

• a sophisticated module system: program
phrases can be grouped into structures,
which can be named and nested;
signatures are type specifications for
structures; they can be used to hide
some of the structure components or
abstract over some type components.

PROGRAMMING LANGUAGE TECHNOLOGIES

30

Functors, that is, functions from
structures to structures, support
parameterized modules

• an expressive class-based object-
oriented layer that includes traditional
imperative operations on objects and
classes, multiple inheritance, binary
methods, and functional updates.

The Objective Caml implementation
comes with general purpose libraries
(arbitrary precision arithmetics, multi-
threading, a toolkit for graphical user
interfaces, etc.) and a Unix-style
programming environment including a
replay debugger and a time profiler.
Objective Caml programs can easily be
interfaced with other languages, in
particular with other C programs or
libraries. The implementation is targeted
towards separate compilation of stand-
alone applications, although interactive
use via a read-eval-print loop is also
supported. Both compilation to byte-code
(for portability) and to native assembly
code (for performance) are supported.
The native code compiler generates very
efficient code, complemented by a fast,
unobtrusive incremental garbage
collector. The implementation runs on
most Unix platforms (Linux, Digital
Unix, Solaris, IRIX), under Windows 95
and NT, and on the Macintosh.

Objective Caml has been used in
numerous applications involving
symbolic computation (automatic
theorem proving, compilation and
interpretation, program analyses), and
for the rapid development of applications
in various areas: tools for the Web
(browsers, intelligent proxies), network
protocols (the Ensemble distributed
communication system at Cornell, the
SwitchWare active networking project
at University of Pennsylvania),
distributed computation, etc. The
interactive system is well suited to
scripting; the byte-code compiler and its
dynamic linking capabilities make it
possible to send or receive compiled
programs from remote sites.

The Caml language is widely used for
teaching in France at both undergraduate
and graduate levels. It is also used in
many academic projects in Europe,
Japan, North and South America.

Several large French corporations
develop significant industrial projects in
Objective Caml, including France
Télécom, Dassault, and CEA
(Commissariat à l’Énergie Atomique).

INRIA is setting up a Caml consortium,
inspired by the World Wide Web
consortium. It will offer industrial and
academic partners to participate in the
development, the maintenance, and the
definition of new features of the
language.

The Objective Caml implementation as
well as extensive documentation on Caml
are freely available on the Web,
http://caml.inria.fr/

■
Please contact:

Xavier Leroy – INRIA
Tel: +33 1 3963 5561
E-mail: Xavier.Leroy@inria.fr

GRADE –
Graphical
Environment
for Parallel
Programming
by Péter Kacsuk
and Sándor Forrai

GRADE is a graphical environment
for parallel programming, based on
message passing, initiated in 1994 and
developed in the frame of European
projects in co-operation with many
partners from Hungary and abroad.

Due to the inner difficulties of parallel
programming (communication,
synchronisation, parallel debugging,
visualisation and performance analysis),
efficient program development requires
powerful graphical tools. The main goal
of our project is to develop a graphical
environment for efficient parallel
programming, based on message passing
(GRADE). The developed programming
tools integrated in GRADE offer both the
ease of use and the flexibility to complete

both simple and complex parallel
applications. Using two of the most
popular message-passing interfaces, the
software packages PVM (Parallel Virtual
Machine) and MPI (Message Passing
Interface), the execution of the developed
applications in a heterogeneous
computing environment is allowed. The
MPI (Message Passing Interface) version
of GRADE has been recently completed
and it is under testing. The first prototype
of the GRADE was launched in 1997 and
the first version for distribution is
expected by the end of 1998.

GRADE is based on the following tools
as main components:

• GRAPNEL – graphical parallel
programming language (developed by
the Laboratory of Parallel and
Distributed Systems (LPDS) at
SZTAKI)

• GRED – graphical editor (developed
by LPDS), for parallel applications
development, which supports the syntax
of GRAPNEL language

• GRP2C – pre-compiler (developed at
the University of Miskolc, Hungary),
for C code generation (with PVM or
MPI function calls) from the graphical
program

• TAPE/PVM – monitoring tool for trace
file generation (developed at IMAG,
Grenoble, France)

• DIWIDE – distributed debugger
(developed by LPDS)

• PROVE – visualisation tool for trace
file analysis (developed by LPDS).

The program development cycle in
GRADE is summarised as follows. In the
first phase the parallel program is
designed by using the graphical
programming language GRAPNEL. In
the next step the GRED editor creates a
.GRP file from the GRAPNEL program
which contains all the information
necessary to restore the program graph
for further development and to compile
the GRAPNEL program into C and
PVM/MPI code. Finally, the GRP2C pre-
compiler additionally creates other
auxiliary files (including makefiles used
by UNIX) for building the executable
file.

PROGRAMMING LANGUAGE TECHNOLOGIES

31

The C code generation and compilation
is fully automated on every host of the
heterogeneous cluster of workstation.
Based on the executable file, the parallel
program could be executed either in
debugging mode or in trace mode. In
debugging mode the DIWIDE distributed
debugger provides commands to create
breakpoints, step-by-step execution of
the program, animation, etc. In trace
mode a trace file is generated containing
all the trace events defined by the user.
These events are visualised by the
PROVE, also used for performance
analysis and for further optimisation.

The GRAPNEL (GRAphical Process’s
NEt Language) has been developed for
designing distributed programs based on
message passing programming paradigm
where the programmer can define
processes which perform the
computation independently in parallel,
and interact only by sending and
receiving messages among themselves.

The main purpose of the graphical
presentation is to give a high level of
abstraction of the distributed programs
where the key points are the
communication operations among the
processes. In addition, GRAPNEL
provides the possibility of structured
programming with respect to the
processes as program units.

In GRAPNEL language the most
fundamental unit is the process which
manifests itself at two levels: Process
Communication Level and Process
Internal Level. Every process has two
graphical views: one for describing the
communication connections (ports and
channels) to the other processes (Process
Communication Level or Application
level), and one for describing the inner
structure of the process (Process Internal
Level or simply Process level).

The GRAPNEL programming
environment - the GRED editor - supplies
the necessary support for both levels. A
graphical window serves for describing
the whole application at the Process
Communication Level, representing the
process graph of the application.
Moreover, for each process a new
graphical window can be opened where

the inner structure of that process can be
defined at the Process Internal Level of
the graphical representation.

GRAPNEL supports top to bottom
parallel program design, based on three
hierarchical levels. Application level: the
whole application is described

graphically, with respect to
communication among the processes.
Processes, process groups,
communication ports and connections
among the processes are defined
graphically and processes’ functionalities
are hidden at this level. Process level: the
send and receive operations and their
surrounding program structures are
defined graphically. Text level: Textual
program parts can be written in standard
C (which can be done in any standard
UNIX editor), other textual languages
(eg FORTRAN) will be supported in
future.

GRAPNEL can be useful for both non-
professional (not experienced with
distributed systems) and professional
programmers. The advantages are given
by the graphical environment: easy
design, representation and debugging of
parallel applications.

Therefore, the main benefits of GRADE
are as follows: graphical programming
environment for parallel application
development (program developers are
not required to know the syntax of the
message-passing system), automatically
generated and distributed executable
program code (even in heterogeneous

computing environment), debugging and
visualisation of the developed parallel
program in a fully graphical programming
environment.

As a conclusion, GRADE is a general
purpose graphical programming
environment for parallel programming
which can be applied successfully in
many application areas. As future
activities, we intend to develop parallel
applications in the following fields:
computational fluid dynamics, numerical
simulation, weather forecasting, pattern
recognition and document analysis, etc.
Partners from industry and academia,
interested in parallel applications, are
welcome.

GRADE has been installed successfully
on the following hardware/software
platforms: Hitachi SR2201/HI-UX
(Massively Parallel Processor), SGI/IRIX
5, SGI Origin Series/IRIX 6, Sun Solaris/

PROGRAMMING LANGUAGE TECHNOLOGIES

GRADE – graphical development environment.

32

SPARC 2.6, Intel 2.0/Linux. Currently,
GRADE is used by the following
institutes: University of Westminster,
London; Institute of Computer Systems,
Slovak Academy of Sciences;
Universidade Nova de Lisboa;
Universidad Autonoma de Barcelona;
Technical University of Gdansk, Poland;
University of Miskolc, Hungary;
University of Vienna; Polish-Japanese
Institute of Computer Techniques.

Up-to-date information about GRADE
and the Laboratory of Parallel and
Distributed Systems of SZTAKI is
available at http://www.lpds.sztaki.hu/.

■
Please contact:

Péter Kacsuk – SZTAKI
Tel: +36 1 329 7864
E-mail: kacsuk@sztaki.hu

Sándor Forrai – SZTAKI
Tel: +36 1 329 7864
E-mail: forrai@sztaki.hu

Programming
with Rewrite
Rules and
Strategies
by Hélène Kirchner

ELAN is a language to express non-
deterministic computations via rewrite
rules and strategies. Strategies are the
part of the program that specifies the
way rule application is to be controlled.
Compilation techniques are studied in
this context for an efficient execution
of these programs. ELAN is developed
in the PROTHEO project common to
CNRS, INRIA and Universities of
Nancy.

Rules are present in many domains of
Computer Science: let us mention for
instance production rules, inference rules,
grammar rules, transition rules, constraint
simplification rules, program
transformation rules, to cite a few. All of
them are actually rewrite rules, ie
schemas allowing to transform
expressions. A set of rewrite rules is a

program (or a theory) in rewriting logic.
To execute such a program with a given
query (the expression to rewrite), at each
step one has to choose the rule to apply
and the position in the expression where
the rule is to be applied. This choice may
be complex, even in a case that may look
simple of simplification of arithmetic
expressions.

Due to this inherent non-determinism,
controlling rewrite rule application is an
important issue for all kinds of rules.
Control is expressed as search plans in
theorem provers; action plans in
scheduling; tactics or tacticals in logical

frameworks; lazy evaluation in functional
programming; or via constructs like cut
in logic programming. In most
programming languages the evaluation
strategy is fixed, which avoids non-
determinism, so that the evaluation
process is then easier to implement. The
counterpart of this option is that programs
are dependent on this built-in evaluation
strategy. Any control deviating from this
has to be encoded via data or program
structures.

The approach followed in the ELAN
project is different. Programs are
composed of rewrite rules and strategies
whose purpose is to guide choices in non-
deterministic situations, to select rules to
be applied, or to cut useless branches in
the computation tree. Strategies are terms

with higher-order types that are applied
to first-order terms.

Since rewriting is inherently non-
deterministic, in ELAN, a computation
may have several results. This aspect is
taken into account by a backtracking
capability, and choice strategy
constructors (don’t know, don’t care,
don’t care one) that allow specifying
whether a strategy call returns several,
at-least one, or only one result. Strategies
can be sequentially composed and
iterated. Elementary strategies are
labelled rules. From them and the
strategy constructors, more complex

strategies can be expressed. In addition,
the programmer can declare new strategy
operators, define them by rewrite rules,
and design rules to simplify strategy
expressions.

The current version of ELAN includes
an interpreter and a compiler written in
C++ and JAVA. Both can interact via an
exchange format (REF, for Reduced
ELAN Format) which is a term
representation of ELAN programs. This
format appears to be a convenient way
for to transform ELAN programs making
use of ELAN itself, and is the key for the
implementation of a reflection
mechanism in ELAN.

Initially, the system was designed for
specifying and prototyping theorem
provers, constraint solvers and decision

PROGRAMMING LANGUAGE TECHNOLOGIES

General architecture of the ELAN system.

33

PROGRAMMING LANGUAGE TECHNOLOGIES

procedures, and for studying their
combination. For instance COLETTE is
a solver for constraint satisfaction
problems designed in ELAN, where
propagation and consistency techniques
can be experimented with flexible
definitions of strategies.

To deal with such applications, efficiency
is crucial and motivates the development
of the ELAN compiler. Compilation
techniques for non-deterministic rewrite
programs with strategies are based on
efficient data structures such as matching
automata and compact bipartite graphs,
but also on a careful memory and
backtracking management. For
implementation of backtracking, two
functions are usually required: the first
one, to create a choice point and save the
execution environment; the second one,
to backtrack to the last created choice
point and restore the saved environment.
These functions are implemented in
assembly language and may be useful in
other contexts, for instance to implement
backtracking in imperative languages.

A determinism analysis is performed in
the ELAN compiler, where every rule
and strategy in the program is annotated
with its determinism mode which
classifies the strategies according to the
number of their expected results. In case
of deterministic strategies with 0 or 1
result for instance, many choice points
are dropped at run time. This approach
considerably reduces the search space
size, the memory usage, the number of
necessary choice points, and the time
spent in backtracking and memory
management. The determinism analysis
simply makes possible to run programs
that could not be executed without it due
to memory explosion. This was the case
in particular for constraint satisfaction
problems. In other examples, this
analysis significantly decreased the
number of set choice points and
improved the performance. The ELAN
compiler can handle large specifications
(thousands of rules and strategies), long
computations (more than 20.10^9 applied
rules), and can apply on some examples
up to 17.10^6 rewrite steps per second.

The simple rewriting paradigm that is
implemented in ELAN as the evaluation

mechanism of the language actually
provides a logical framework in which
deduction systems can be expressed and
combined. Rewriting logic is a natural
semantic framework for concurrency and
parallel programming, and for the
specification of systems and languages.
It has also good properties as a logical
framework for representing logics. A
growing number of research efforts
exploring the application of rewriting
logic in all these directions are being
carried out worldwide, and several
languages based on rewriting logic are
being designed and implemented. ELAN
is one of them and can be compared to
other systems such as ASF+SDF (CWI,
The Netherlands), Maude (SRI,
California) or Cafe-OBJ (JAIST, Japan).
The originality of ELAN with respect to
these other languages is to provide non-
deterministic computations and to have
initiated the implementation of strategies.

Perspectives for the ELAN project
include improvement of the overall
design of the system, the study of
reflection properties of the framework,
and the design of proof editing and
debugging tools.

For more information on the ELAN
system, see http://www.loria.fr/ELAN/

■
Please Contact:

Hélène Kirchner – LORIA
Tel: +33 3 83 59 30 12
E-mail: Helene.Kirchner@loria.fr

Using
Co-ordination
to Parallelize
Existing
Sequential
Programs
by Farhad Arbab, Kees Everaars
and Barry Koren

The co-ordination language
MANIFOLD, developed during the
1990s at CWI, has important
applications in the parallelization of
computation intensive sequential
programs. The language is based on a
novel model for control-oriented
coordination (IWIM).

Programming in MANIFOLD (see
ERCIM News 35, page 33) is a game of
dynamically creating process instances
and (re)connecting the ports of some
processes via streams (asynchronous
channels), in reaction to observed event
occurrences. This style reflects the way
one programmer might discuss his
interprocess communication application
with another programmer by telephone
(let process a connect process b w i t h
process c so that c can get its input; when
process b receives event e, broadcast by
process c, react on that by doing this and
that; etc.).

As is already clear from this phone call,
processes in MANIFOLD do not
explicitly send a message to or receive a
message from another process. Processes
in MANIFOLD are treated as black-box
workers that can only read or write
through the openings (called ports) in
their own bounding walls. Always a third
party – a coordinator process called
‘manager’‚ – is responsible for setting
up the communication channel between
the output port of one process and the
input port of another process, so that data
can flow through it.

This setting up of the communication
from the o u t s i d e is very typical for

34

PROGRAMMING LANGUAGE TECHNOLOGIES

MANIFOLD and has several advantages.
An important advantage is that it results
in a clear separation between the modules
responsible for computation and those
responsible for co-ordination, and
therefore also strengthens the modularity
and enhances the re-usability of both
types of modules.

MANIFOLD has been successfully used
at CWI to restructure a sequential
existing implementation of a real-life
heavy-duty Computational Fluid
Dynamics application (with a semi-
coarsened multi-grid Euler solver

algorithm). The sequential version of this
software was created in the framework
of contract research financed by the
European Union (BRITE/EURAM). For
the restructuring of the sequential
application into a parallel application we
used a master/worker protocol
implemented in MANIFOLD.

The idea is simple. In a coordinator
process we create and activate a master
process that embodies the computations
of the main program of the sequential
version. When we arrive in the ‘master’‚
at some work that could be parallelized

(in our case the pre- or post-relaxation
on the different grids), the master does
not perform these computations itself but
delegates it to a number of ‘worker’‚
processes. Each time the master needs a
worker to delegate some work to, it raises
an event to signal the coordinator to
create a worker. In this way a pool of
workers is working for the master, each
worker performing pre- or post-
relaxation.

When the workers have finished their
relaxations (this creates a synchronization
point in the application), the master

proceeds its sequential work until it again
arrives at a point where it wants to use a
pool of workers to delegate the
relaxations to. The Figure shows the
dynamically created pools of workers
during a semi-sparse multigrid run. Here
we can see for example that for level 6
there are 268 pools of workers created,
in which a total of 1838 (ie, the total of
the heights in this histogram) workers
did their relaxation work. In the sparse-
grid-of-grids approach this simple
master/worker implemented in
MANIFOLD was able to improve the

execution time from almost 9 to over 2
hours on a 4-processor machine.

The modularity of MANIFOLD also
enables the introduction of concurrency
step by step. We can therefore proceed
as follows. We initially plug a block of
code as a monolithic computing process
into a concurrent structure, in order to
obtain a running parallel/distributed
application. As more experience is gained
through running the new application,
computation bottlenecks may be
identified. This may lead to replacing
some such monolithic blocks of code
with more MANIFOLD modules that
coordinate the activity of smaller blocks
of computation code, in a new concurrent
sub-structure.

The MANIFOLD system runs on
multiple platforms and consists of a
compiler, a run-time system library, a
number of utility programs, and libraries
of built-in and predefined processes of
general interest. Presently, it runs on IBM
RS6000 AIX, IBM SP1/2, Solaris, Linux,
Cray, and SGI IRIX.

For more information, see website
h t t p : / / d b s . c w i . n l / c w w w i / o w a / c w w w i . p r i n t _
projects?ID=57, and ID=58.

■
Please contact:

Farhad Arbab, Kees Everaars (MANIFOLD)
and Barry Koren (CFD) – CWI
Tel: +31 20 592 4056
E-mail: {Farhad.Arbab, Kees.Everaars,
Barry.Koren}@cwi.nl

Some two thousand odd processes, co-ordinated by MANIFOLD, compute
an aircraft wing. Horizontal: the number of ‘worker-pools’ created during the
parallel applications. Vertical: the number of ‘workers’ in the ‘pool’.

RESEARCH AND DEVELOPMENT

35

EINS-Web:
User Interface
Evaluation in
Digital Libraries
by Silvana Mangiaracina
and Pier Giorgio Marchetti

The construction of new user interface
paradigms, or metaphors, in the
interaction of humans with huge
collections of information is currently
a hot topic in both HCI and Digital
Libraries (DL). We describe the EINS-
Web user interface, designed and
evaluated in the frame of the BRIDGE
and CIME projects, co-financed by the
European Union and coordinated by
the European Space Agency and the
EINS consortium (European
Information Network Services). The
Library of the Italian National
Research Council (CNR) in Bologna
was selected as the test site for the
evaluation of EINS-Web.

The EINS-Web interface enables users
to access distributed collections of
bibliographic and textual databases, and
provides a seamless interaction with the
World Wide Web. The interface design
has been guided by a heuristic evaluation,
using a spiral design approach. This
methodology was adopted as it is largely
software-independent and proactive. It
thus makes it relatively easy to
incorporate suggested adaptations during
the design and testing process.

The Design-Evaluation Spiral Process

The Library of the Italian National
Research Council (CNR) in Bologna was
selected as the test site for the evaluation
of EINS-Web. The evaluation team
consisted of a number of researchers
from the CNR campus with their
information problems in a varied set of
disciplines, such as chemistry, material
science, electronics, physics, geology,
environment, etc., plus a mixed group of
evaluators consisting of information
specialists and user interface experts.

In the construction of the EINS-Web
interface, we reused the design efforts
employed in the development of the
previous version of the interface
(BRAQUE PC where BRAQUE =
BRowse And QUEry), developed for the
Windows environment.

A heuristic evaluation method then
assessed user satisfaction, ease of
learning, ease of use, error prevention
and efficiency of the interface and was
used as a feedback tool to drive a spiral
design process. The evaluation began in
April 1996, when BRAQUE 1.2 was
released. Problems identified by our set
of users were analysed against the above
heuristic criteria. A number of issues
were signalled, mainly of an aesthetic
nature. Some were serious, heavily
influencing the user interaction. Where
possible, suitable solutions were
proposed. As the results of the BRAQUE
PC evaluation were greater than
expected, it was decided to assess and
improve the methodology in the design
of the next generation Web interface.
This new version was called EINS-Web,
as the international EINS consortium had
decided to adopt and test this interface.

All the information collected during the
BRAQUE evaluation sessions, such as
evaluators’ opinions and implementers’
replies, was used as input to drive the
design process for the EINS-Web
interface. Two different evaluation
sessions were conducted: one involving
a mixed group of experts (evaluators) and
users; one with experts only. A new
heuristic evaluation form was used by
the evaluators: for each ‘usability’
problem, a rating value was assigned –
we agreed to assign values from 1 (the
interface does not take this problem into
consideration at all) to 5 (this problem
has been completely solved).

The evaluators were requested to identify
potential usability problems and to link
each problem to the specific heuristic it
violated. Multiple heuristics could be
linked to any given violation. In the
experts-only evaluation session, the same
evaluation - covering the same
information problems - was run by four
different groups of evaluators.

Assessment of the evaluation
methodology and lessons learned

The evaluation was useful in detecting
certain design issues that had been
neglected to some extent. In particular
two problem areas were identified. The
first related to feedback and visibility of
system status. The second regarded user
background knowledge and the user
conceptual model. When the results of
the four different groups of evaluators
were compared, it could be seen that they
had used all the heuristics present in the
evaluation form, either in positive
matches (ie a score >= 3), or in negative
matches (ie one or more problems
recognized were linked to the heuristic).
This result shows that all the pre-selected
heuristics were relevant. We noticed
slight differences in the evaluation
results, depending on the presence of real
users or not. It appeared in fact that in a
‘pure’ heuristic evaluation session (only
interface experts, no real users) it was
possible to detect problems relating more
to the interactive behaviour of the
interface, such as users’ behaviour
problems, conceptual user model,
aesthetic design. The evaluation with real
users made it possible to examine
concrete, real-world information seeking
interaction problems. Matching between
interface design and user expectation is
difficult when information space is
dispersed over very large collections:
expert users want to increase interface
functionality to achieve their goals, whilst
non-expert users want to reduce interface
functionality in favour of intuitive and
simple features.

As a preliminary conclusion we feel that
the interaction among evaluators,
implementers and designers has
contributed significantly to the success
of the spiral design methodology, and is
very necessary to cope with the
requirements of designing interfaces
targeted at the rapidly evolving Internet
world.

■
Please contact:

Silvana Mangiaracina – CNR, Bologna
Tel: +39 051 639 8026
E-mail: mangiaracina@area.bo.cnr.it

RESEARCH AND DEVELOPMENT

36

Service Creation
for All: Initial
Results of the
TOSCA Project
by Richard Sinnott

The TOSCA (TINA Open Service
Creation Architecture) project aims
to develop an open service creation
environment that can be used to
expedite the creation and subsequent
validation of multimedia-based
telecommunication services. In
particular, the project is attempting to
widen the audience of ‘would-be’
service creators. This article gives an
overview of how this is being achieved
in TOSCA.

The TOSCA project which began in
September 1996, has recognised the need
to differentiate between the different
creators of telecommunication services
that might exist in the modern
marketplace. For example, service
designers as might be employed by
public network operators are likely to
create services using a detailed
knowledge of the expected service
behaviour. Business consultants or
telecommunication managers on the
other hand, are more likely to create
services based on an understanding of
the end user requirements, as opposed to
a detailed knowledge of the service
specification and low-level service
construction. Regarding this latter point,
a lack of understanding of technologies
such as C++, SDL (Specification and
Description Language), or distributed
platform technologies such as Orbix etc.
should not be prohibitive to the service
creation process.

As well as providing different levels of
abstraction at which services might be
developed, a key factor on the success of
a service creation environment is the
speed at which a multitude of services
can be created. This includes integration
with their service surround as might be
the case in the usage of an existing

accounting service say, by a newly
created tele-learning service.

To accommodate these requirements on
rapid service creation and the potentially
wide spectrum of would-be users,
TOSCA has taken an approach based
upon object-oriented frameworks in
accompaniment with graphical (and
intuitive) service design tools - so called
Paradigm tools. A framework may be
considered as a mostly complete model

of a service with some pre-defined
flexibility points where the developer can
intervene (either manually or through a
paradigm tool) to specialise the
behaviour of the service.

Currently frameworks in C++/Orbix and
SDL have been completed. These were
based around an existing implementation
of a TINA based multimedia
conferencing service (TIMMAP). Both
of these frameworks started from a TINA
ODL (Office Document Language) and
IDL (Interface Definition Language)
description accompanied by informal
behavioural descriptions and use cases.
We note that tool support (Y.SCE) was
used to convert these ODL/IDL
descriptions to SDL stubs and skeletons
whose behaviour was added (and
checked) using the SDL Design Tool of
the Telelogic TAU toolset.

Different paradigm abstractions have
been considered in TOSCA. Two of
those which resulted in prototype
implementations were:

• functional block paradigm: here the
design of the service is based on
architecting a collection of building
blocks representing particular
functional decompositions of the
overall service behaviour

• movies paradigm: here the design of
the service is based on considering the

service behaviour as a whole through a
sequence of snapshots of its expected
functionality.

The following highlights how the
functional block paradigm tool (Cadenza)
is used to create the different roles that
might exist in a multimedia conference.

Specifying the Roles
in a Multimedia Conference

The functionality associated with these
roles is achieved through inserting
behaviour into specific framework
flexibility points. For example, enabling
a chairman to invite other participants
(the default functionality is that the party
may terminate or suspend their
participation in a session) is achieved
through specialising the framework
flexibility point related to starting user
sessions so that a chairman has an invite
window created. Other flexibility points

Example of the
kind of user
application that
might be
generated for a
chairman from
the framework
using the
paradigm tool.

RESEARCH AND DEVELOPMENT

37

related to stopping, suspending or
resuming user sessions and starting,
stopping, suspending and resuming or
service sessions have also been
identified.

Specialising the Start-Up
of the Chairman Role

More complex building block scenarios
are also possible. The output of these
tools is the specialising C++ or SDL
necessary to complete the service
implementation or SDL model from the
respective frameworks. An example of
the kind of (service-session) user
application (for interacting with the
service implementation and the service
model once a service session has started)
that might be generated for a chairman
from the framework using the paradigm
tool is shown in the figure.

Example of Resultant Chairman
Control Window

Once the SDL model of the service is
complete, it is used as a basis for deriving
test cases to run against the C++/Orbix
implementation of that service. Tool
support (a CORBA/TTCN gateway;
Common Object Request Broker
Architecture/Tree and Tabular Combined
Notation) has also been developed to
allow for these test cases to be executed
directly against the service
implementation.

The TOSCA project is funded under
ACTS (Advanced Communications
Technologies and Services). Further
information on the TOSCA work can be
found at: http://www.teltec.dcu.ie/tosca

■
Please contact:

Richard Sinnott – GMD
Tel: +49 30 3463 7298
E-mail: sinnott@fokus.gmd.de

Pushing
Environmental
Information
by Tuula Käpylä

VTT Information Technology has
been designing and implementing a
push application for EIONET
(European Environment Information
and Observation Network) to intensify
the acquisition and distribution of
environmental information of the
European Environment Agency
(EEA).

Information overload makes it more and
more difficult to get the right information
at the right time. The ‘traditional’ pull
technology model is becoming a limit for
more efficient use of the WWW,
specifically requesting information from

a particular source, eg downloading a
page with a browser is an example of pull
technology. At present, pull technology
seems to be adequate for information that
is not time or content critical. As the
WWW grows in size and complexity,
however, new information delivery
models such as push technology will
become increasingly important. Push
technology is a technology by which a
program running on a workstation can
either request or receive information from
the WWW automatically (on a pre-
arranged schedule or when certain events
occur) and then display that information
on the screen.

Personalised Information flow
by IDA-PUSH

EIONET is a co-operative organisational
network of institutions that assists the
European Environment Agency in
providing the European Community and
its member states with environmental

Push Advantages

• Push technology can reduce the burden of acquiring data for tasks in which there is a
large information flow. Push technologies improve efficiency by downloading
information to a user's system in a scheduled fashion so that it can be rapidly viewed,
thereby eliminating the risk of the user never viewing the updated information. The
user always has the latest information. No longer do users have to search for the
information.

• Push technology can reduce the burden of acquiring data for tasks where occasional,
time-critical data must receive immediate attention.

• Businesses are able to target users with more precision, focusing on those who are
more likely to benefit from their products or services.

• Automatic downloading of software upgrades and fixes is a way to deliver software
faster and, at the same time, reduce the costs associated with packaging and selling
through the retail channel. A key factor in allowing such distributed services is a
security system applicable on either side of a firewall.

• Only new and changed information has to be sent to the computer, so access to the
Internet and download time is minimised.

• The software is run on the client side, minimising processor use of company’s WWW
servers. Servers can use more processor time for data production rather than the
processing of numerous client requests and the transmission of much data over the
network. Servers can better manage the amount of data transferred over the network.

• Response time is generally quicker because the information is on a local computer,
not on a remote server.

• Because push applications run mostly on the client side, users can more easily
protect their privacy. In many push applications the user profile and the log
information about the user's behaviour are stored in the user's computer. An ordinary
WWW application stores this data in the content provider’s database.

• Push technology enables intelligent information filtering based on personalised user
profiles describing required information needs.

• When some data must be provided to employees in compliance with laws, company
rules, health and safety and quality control, push technology can help here if
combined with some mechanism for reporting when users have spent sufficient time
assimilating the received information.

RESEARCH AND DEVELOPMENT

38

information. It also allows the electronic
exchange of information between these
organisations. EIONET is currently an
intranet connecting multiple national
hosts (intranet nodes).

The IDA-PUSH application manages
documents retained and edited under a
workgroup program (IRC Circle) based
WWW repository. This workgroup
program enables interest group members

to load documents and modify them on
the server.

The push functionality means the ability
of the IDA-PUSH application to inform
its users of the changes in the WWW
repository that might interest the user.
The information mediated to the user by
push technology can consist of actual
data or links to the data. Users can
personalise their information flow by
selecting which channels they receive as
well as the type of information broadcast
within each channel.

The information coming to a user's
workstation is a summary of a larger
document that the user can access by
requesting additional details. By clicking
on a headline the full article appears on
the screen. Personalised screen savers
keep the user informed of the latest
information with headlines that scroll
across the screen. The IDA-PUSH s c r e e n
saver uses headlines to inform users of
new meetings and the latest documents.
A personalised ticker is a movable, bar-

shaped window that can even display
time-sensitive information while the user
works in other applications. A ticker can
also run on the screen saver. IDA-PUSH
uses the PointCast Intranet Broadcast
Manager to broadcast information.

The IDA-PUSH application is general
enough to be applied to different WWW
repositories with a reasonable amount of
work. In the IDA-PUSH project we have
also reviewed the current market

availability of push tools as well as the
differences between them. The project
was carried out in co-operation with EEA
and Tieto Corp.

■
Please contact:

Tuula Käpylä – VTT
Tel: +358 9 456 6054
E-mail: tuula.kapyla@vtt.fi

NESSIE –
Awareness
Environment
by Wolfgang Prinz

The NESSIE project develops an
infrastructure through which the
events in an electronic environment
can be captured, communicated and
presented across the Internet.

The support of awareness is an important
requirement for the successful
implementation of groupware
applications, and for the use of the
Internet as a social medium. Awareness
involves the perception of important
events and relevant actions of remote
partners engaged in synchronous or
asynchronous cooperation. It is important
that the notification occurs in social and
task-related contexts and that longer
periods of absence between notifications
can be bridged, eg, through summary
reports or multimedia process
visualizations.

The goal of NESSIE is the development
of an infrastructure through which the
events in an electronic environment can
be captured and made available to
authorized users across the Internet. It
should be possible to signal all kinds of
events, in particular, presence, actions
and movements of other participants,
agents, or objects. The NESSIE System
is not bound to a specific application, but
instead offers its services globally, across
applications.

Architecture

The NESSIE system consists of a server,
which uses an open protocol to receive
event information from any type of
application. Through a client, users – or
other programs – can register their
requests for event information with the
NESSIE server. Additionally, the type
and conditions of the indicators can be
individually configured. This serves as
the technical basis for reciprocal
perception of events and for group
awareness in a Social Web.

The server-side architecture of the IDA-PUSH application.

RESEARCH AND DEVELOPMENT

39

NESSIE can also be used to set up a
personal information service that
monitors and reports the events in an
electronic environment. Events might
range from learning who is visiting one’s
homepage to an individually configured
Push-Service, which would announce a

traffic jam as one heads home in the
evening.

Presentation Form

NESSIE uses various representations to
show events, eg PopUp windows,
animations, ticker tapes, or sound.
Beyond electronic representation, the
NESSIE project experiments with
tangible interfaces which support
presentation of events independent of a
computer screen.

Three-dimensional virtual environments
provide a new medium for the
presentation of events. For this purpose,
NESSIE uses the SmallView system
developed at the GMD Institute for
Applied Information Technology to
establish a connection between real and
synthetic virtual environments.
SmallView, which is based on the
Internet standard VRML (Virtual Reality
Modeling Language) for the visualization
of three-dimensional scenes, lets several
users communicate and interact across
the Internet within a distributed virtual
environment. Gestures and actions of
the user may be captured by sensors such
as MOVY, a prototype developed in
GMD Institute for Applied Information

Technology, which can sense
acceleration, determine rotation and
movement of an object and radio the
information to a local computer system.

Partner in the NESSIE project is the
StatOil Research Center, Norway.
NESSIE is part of our research program
The Social Web: New Forms of
Interaction in Virtual Environments
(h t t p : / / o r g w i s . g m d . d e / p r o j e c t s / S o c i a l W e b) .

■
Please contact:

Wolfgang Prinz – GMD
Tel: +49 2241 14 2730
E-mail: wolfgang.prinz@gmd.de

Eurosearch:
a Federation
of European
Search Engines
by Martin Braschler, Mounia
Lalmas, Luigi Madella
and Carol Peters

The objective of the EuroSearch
project is to build a federation of
European search engines. The main
aims of the federation are to join forces
in order to be able to better compete
with global search engines, to enhance
the visibility of European web sites,
and to help to preserve European
language and cultural diversity. The
technologies under development will
provide linguistic support for querying
over different search services and
enable the automatic generation of
catalogues, best reflecting local
cultures within the federation.

The decision of the EuroSearch
consortium of industrial (Italia On-Line,
Pisa; CINET, Barcelona; EuroSpider
Information Technology, Zurich) and
academic partners (CNR, Pisa, and
Dortmund University) to build a
federation of European search engines
originated from the consideration that the
World Wide Web is still dominated by
US culture and so far little effort has been
put into promoting European web sites.

A study of the incoming traffic of the
services provided by the EuroSearch
partners determined that about 70%
comes from the same country or from
countries using the same language; of the
outgoing traffic more than 50% is
directed to the US, while almost all the
rest remains in the country of origin. This
situation has been analysed as depending
mainly on language barriers between
European countries, the poor multilingual
support in traditional search engines, and
on the US cultural domination of most
popular web catalogues.

The EuroSearch project thus aims at
helping to restore linguistic and cultural
equilibrium on the Web by building a
pan-European federation of national
search and categorization services. The
main objectives of the federation are to:

• promote traffic across Europe by
exchanging links and sharing services

• provide language support for query
translation

• provide tools for automatic
categorization in order to overcome the
high costs of traditional catalogues, still
affordable only by big international
organisations.

The Cross-Language Approach

The aim of the EuroSearch distributed,
multilingual service is to permit users to
enter queries in their own, or their
preferred language, and to carry out
search and information retrieval over
some or all of the federation’s national
sites.

Differences in the partners’ document
collections and indexing mechanisms
have led to the implementation of
different search strategies, depending on
the collection to be queried. The cross-
language search component of
EuroSearch thus activates two distinct
types of searching:

• Query translation using a multilingual
lexicon; this employs the pivot language
concept and semantic indicators are
assigned to polysemous words to permit
interactive sense disambiguation.
Queries can also be expanded using
corpus-extracted data.

Tangible indicator: Nessie lets the
balloon pop out of the box.

TECHNOLOGY TRANSFER

40

• Similarity thesaurus technology; a
multilingual similarity thesaurus
contains entries linking terms in one
language to a list of similar terms in
another, each assigned with a similarity
value based on statistical co-occurrence,
ie basically how often the terms co-
occur in similar texts taken from
training data.

The languages covered are currently
German, Italian and Spanish, plus
English. The two approaches are
integrated through the development of
common translation server interfaces and
data exchange formats; this will facilitate
future extensions of the Eurosearch
components.

A preliminary simplified prototype of a
Translation Server has been developed
and integrated in the Arianna search
engine, allowing queries in Italian to be
formulated and directed to Alta Vista.
This server will be extended with the
addition of a corpus-based query
expansion mechanism. In 1999 the
integration of the linguistic resources on
all the federated services will be
completed.

The Automatic Categorization
Technology

Another important goal of the project is
to facilitate the creation of Web
catalogues by developing techniques for
the automatic categorization of
documents. In this way, even small
corporations will be able to develop their
own catalogues.

The categorization approach is grounded
on an automatic textual analysis of web
documents associating weighted terms
with documents. The determination of
the weighted terms is based on the
description-oriented indexing approach
developed at the University of Dortmund.
It takes into account features:

• specific to web documents (whether a
term appears in a title, a heading, or
is highlighted)

• standard to text documents (term
frequency).

The weights are probabilistically
determined using the Least Square
Polynomial (LSP) approach and a test-
bed of pre-categorized documents taken
from the ‘Computers and Internet’ part
of the Yahoo! catalogue.

This approach produces two main results:

• the automatic classification of new
documents into appropriate categories

• the determination of documents that
belong to given categories.

The approach is fully automatic, and is
portable to the various languages
involved in the federation. We are
currently applying our techniques to
German web documents from the DINO-
online catalogue.

A preliminary on-line prototype is now
running, and an engineered version is
available in the Arianna catalog. This is
one of the first examples in the world of
automatically generated catalogues
available on the Web.

For further information and demos, see
the EuroSearch Web site at:
http://eurosearch.iol.it/

■
Please contact:

Luigi Madella – Italia Online
Tel: +39 050 944258
E-mail: l.madella@pisa.iol.it

APEX -
Awareness
and Promotion
EXercise
by Mike Ashworth
and David Emerson

APEX is a two-year project funded by
the European Union ESPRIT IV
programme. Its aim has been to
promote the benefits of using High
Performance Computing (HPC) in
combination with Computational
Fluid Dynamics (CFD) to support the
next generation approach to industrial
research and development in the
process industries, with emphasis on
the use of Information Technology for
simulation and prediction. A multi-
media CD-ROM describing the
benefits of CFD and HPC has been
widely and freely distributed
throughout the European Community.

The very fast pace of change within HPC
hardware and continuous developments
of CFD software require a way of
conveying information very rapidly. A
specific goal of the APEX project was to
develop a multimedia CD-ROM that
could be distributed to relevant industrial
companies. The CD contains detailed
information about HPC and CFD and
results from two industrial applications
from the ESPRIT III HP-PIPES project
(#8114). An additional important feature
is a Cost Benefit Analysis (CBA) section
that will allow senior management to
consider the investment decisions and
risks concerning such technology. The
partners involved in APEX are:

• CLRC Daresbury Laboratory,
Warrington, UK, responsible for the
HPC section and industrial
application of Tioxide reactor

• Instituto Superior Tecnico, Lisbon,
Portugal, responsible for the CFD
section and industrial application of
EDP power station burner

• Paras Ltd., Isle of Wight, UK,
responsible for the CBA section and
project management.

TECHNOLOGY TRANSFER

41

The APEX CD highlights two industrial
applications from the process industries.
In collaboration with industrial partners,
the HP-PIPES project developed a CFD
code to solve the 3D incompressible
Navier-Stokes equations and to augment
the core code with modules describing
the physics and chemistry of particular
applications. It was demonstrated that
advanced numerical simulation can be
used as a realistic predictive tool for the
design and operation of complex
chemically reacting flows and
combustion systems. The core code,
developed at Daresbury Laboratory,
describes fluid flow and heat transfer in
process engineering systems and has
been designed to exploit the power of
massively parallel high performance
computing systems. It has been written
in a portable and modular form to
facilitate the future development of
modules for the specific features of
particular applications.

An Industrial Application Example:
Production of Titanium Dioxide

Tioxide plc, formerly owned by ICI, is
one of the world’s largest producers of
the white pigment titanium dioxide that
is widely used in materials such as paints
because of its good light scattering
characteristics. The critical parameters
of the product are the mean size of the
particles, which dominates its scattering
power, and the distribution of the
different particle sizes about the mean
diameter, which affects the range of
wavelengths that are scattered and the
resulting effectiveness of the pigment in
materials such as paints.

The HP-PIPES code was designed to
overcome limitations in the existing
model of the titanium dioxide process,
in particular in the areas of the physical
and chemical modelling and in the
resolution of the flow field. At the start
of the project axi-symmetric simulations
were taking approximately one month to
converge. The parallel implementation
reduced simulation times to a few hours.
This opened up the possibilities of
exploring in more detail the phase space
of physical and chemical parameters
embedded in the model, enabling
improvements in the theoretical bases of

the various physical and chemical sub-
models and moving the models to three
spatial dimensions better to simulate real
reactor geometries. The ultimate aim of
the HP-PIPES project was to develop a
predictive model capable of determining
the optimum reactor configuration and

operating conditions so as to produce
particles of a specified mean diameter
and standard deviation.

The Titanium Dioxide chloride process
occurs in a basic pipe reactor. The
oxidation process involves several
complicated stages which may include
the nucleation, growth and coagulation
of the titania particles and the dissociation
and recombination of chlorine produced
in the reaction. In general the reactors
have multiple inlets through which the
feed materials, titanium tetrachloride and
molecular oxygen, are fed at various
temperatures, velocities and mixture
fractions. The products, and any
unreacted input materials, flow through
the reactor at high speed. Initially, titania
particles are assumed to form as nuclei
and these become larger through surface
deposition and coagulate as they flow
through the reactor. These various
processes produce a continuous size
distribution of titania particles with a
broad distribution of sizes.

The particle growth process is modelled
by discretising the size distribution in
terms of a fixed number of size intervals

characterised by a mean diameter. Each
of the size classes is then treated as a
distinct transported variable in its own
right The models can employ anything
up to 100 class sizes for high accuracy
computations. The calculations of the
various source terms describing the

nucleation, growth and coagulation is
extremely time consuming as the
coagulation terms fully couple all the size
class variables in each finite volume. It
is obvious that three-dimensional
computations for systems with this
number of class size variables would be
completely impractical and uneconomic
in the absence of parallel systems.

The APEX CD-ROM

The APEX CD-ROM is an interactive
multi-media presentation, which
introduces CFD and HPC, shows results
from two typical applications (a chemical
reactor and a power station boiler) and
guides the viewer through the investment
decision process.

The CD-ROM is available cost-free from
the contact address below or by filling in
the electronic form on our Web Page
h t t p : / / w w w . d c i . c l r c . a c . u k / A c t i v i t y / A P E X

■
Please contact:

Mike Ashworth – CLRC Daresbury
Laboratory
Tel: +44 1925 60 3663
E-mail: M.Ashworth@dl.ac.uk

Results of the HP-PIPES Tioxide reactor simulation.

TECHNOLOGY TRANSFER

42

MOVY –
Wireless Sensor
for Gestures,
Rotation and
Movement
by Peter Henne

Increasingly, innovative applications
need to be able to sense spontaneous
(natural) movements of the user. This
need is obvious for a head-mounted
display (data helmet) that lets the user
look and wander around in a virtual
3-D world. More recently, the idea to
capture and communicate natural
gestures to manage net-based
teleconferencing applications has
defined a new set of requirements for
motion sensors (trackers). MOVY is a
wireless input device that captures the
user’s gestures, movements of the
hands or the head, shifts in the focus
of vision or any unspecific movement
that a program may be able to
interpret.

Magnetic trackers are widely used today.
This technology uses a strong artificial
magnetic field. The sensors that move
about in this magnetic field can capture
the variations in its direction and strength.
They determine position and movement
of the tracker on that basis. Besides their
high price, magnetic trackers have some
technical shortcomings: it takes
considerable time and effort to install and
to calibrate them. The natural magnetic
field and even metal objects may confuse
the sensors, the space where movement
can be captured is rather limited.

Requirements for the next generation of
trackers would include:

• the tracking technology does not rely
on any artificial external sources

• the tracker can use wireless data
transmission to get the data into the
computer, so that no cabling hampers
spontaneous and natural gesturing

• the tracking device proper should be
small enough to fit comfortably in the

user’s hand or to be worn like a ring on
the index finger

• the tracker should, above all, be easy
and cheap to produce.

MOVY

At the GMD Institute for Applied
Information Technology, the MOVY
inertial tracker has been developed to
meet these requirements. At the moment,

three hand-crafted prototypes are
available for experiments. At their core
are three semiconductor accelerometers,
one each for the X, Y and Z axis, that
respond to changes in velocity producing
a proportional voltage. The sensors in the
MOVY prototypes can capture
acceleration in the range of 4 mg to 2 g,
up to 50 hz.

The analog signals are converted in a
microprocessor that outputs, in a stream
of serial (RS232)-frames, the raw
acceleration data to a small radio
transmitter. The corresponding receiver
feeds the data into the serial port of a PC
that runs the driver program which
computes MOVY’s orientation and
location in X, Y and Z.

The first MOVY prototype including the
radio transmitter draws about 40
milliamperes, ie, it can operate on a small
battery. This allowed to fit the MOVY
in a 45 x 50 x 38 mm case. To show the
potential for further miniaturization, the
latest MOVY is a modular, two
accelerometer design: the sensors are
fitted to a ring for the index finger, with
a light cable running across the hand to
the microprocessor and radio transmitter
in a small box strapped to the wrist.

Performance

MOVYs are about one tenth the size of
the trackers in use today. If mass-
produced, MOVYs could be fairly cheap.
MOVYs are good at determining
orientation. Pitch and roll data have an
accuracy of 1.4 degrees. The MOVY
prototypes are less good at determining
location: location data produced by
integrating acceleration data are reliable
only in specific situations.

■
Please contact:

Peter Henne – GMD
Tel: +49 2241 14 2688
E-mail: peter.henne@gmd.de

IQTension –
Revealing
Uneven Tension
Profiles of
Paper Reels
by Hannu Linna

In June 1998 Valmet Automation
launched its IQTension product at the
PulPaper ‘98 fair in Helsinki.
IQTension provides a new method of
revealing uneven tension profiles in
cross direction (CD-profiles) of paper
reels before they can cause any harm
at the printing press. The system was
developed by Valmet’s various units
in close collaboration with VTT
Information Technology. Valmet is
one of the world’s leading supplier of
paper and board machinery and
related process control. So far Valmet
Automation has sold nine IQTension
systems, mostly to paper mills outside
Finland. The first device was installed
at Helprint Quebecor Oy, the largest
rotogravure printing house in the
Nordic countries.

According to VTT Information
Technology’s research results, the
tension profile of the paper reel is an
important quality property. There is a
clear interdependency between the

The MOVY prototype
taken apart.

TECHNOLOGY TRANSFER

43

tension profile and the runnability of
paper and thus also the amount of paper
wasted at the printing press. The
difference in the amounts of wasted paper
is enormous when comparing good and
bad paper reels. A large rotogravure
printing house can lose tens or even
hundreds of tons to wasted paper because
of poor tension profiles meaning great
economical loss.

During the development of Valmet’s
IQTension, the tension profiles of over
5,000 paper reels were measured at the
Helprint Quebecor rotogravure printing
house. The experiment revealed that the

tension profile affected both the reel’s
break sensitivity and the amount of paper
wasted during the printing process. The
tension profile’s minimum value
measured at the beginning of the reel was
the most critical factor for the number of
breaks. During a run, the number of
breaks depended considerably on how
unbalanced the overall shape of the
tension profile was. There are significant
variations in the papers supplied by
different manufacturers. The larger the
fluctuations in the tension profile, the
higher are the percentages of breaks.
Harri Sundell, Production Manager at
Helprint Quebecor Oy commented: “This
product marks the beginning of a new
era. Papermakers and printers can

collaborate and use the information
supplied by IQTension to achieve better
quality in printing and less paper
wastage”.

VTT has modelled the interdependencies
between the different paper properties as
well as the interactions between paper
characteristics and runnability. The
software, which makes it possible to take
into consideration also properties
measured across the web (CD-profiles),
is currently customised for research
purposes. It will, however, be developed
into a practical tool with applications in
every-day production. VTT Information
Technology is a pioneer on a global scale
as far as advanced research into the
runnability of paper on paper machines
and printing presses is concerned. VTT
is also studying how greater advantage
can be taken of the enormous amount of
data measured from paper.

The first IQTension device installed in a
paper mill is at UPM-Kymmene
Corporation’s Kaipola mill, where it has
successfully improved both production
efficiency and paper quality. The
installation is also being exploited for
research purposes.

IQTension was recently awarded the
ATIP (Association Technique de
l’Industrie Papetière) innovation prize at
the ATIP 51st Annual Meeting in
Grenoble, France. The ATIP innovation
prize has been awarded four times. This
year more than 30 products were
competing for the prize.

■
Please contact:

Hannu Linna – VTT Information Technology
Tel: +358 0 456 5253
E-mail: Hannu.Linna@vtt.fi

Development
of Research
Networking
in Africa
by Abraham Gebrehiwot
and Stefano Trumpy

It is in the interest of the whole world
for the African continent to become a
full player in the global information
society. In order to achieve this,
consistent efforts and support are still
needed from the more technologically
advanced nations. CNUCE-CNR
(previously) and IAT-CNR (now) have
been strongly involved in such
activities.

The RINAF (Regional Informatics
Network for Africa) project was launched
by UNESCO’s Intergovernmental
Informatics Programme (IIP) in 1992.
Mainly financed by the Italian
Government, the project has aimed at
supporting the interconnection of
academic and research institutions within
Africa and their connection to the
international research community
through the provision of computer
equipment, basic network services and
the organization of training activities for
technicians and end-users. The CNUCE
Institute of the Italian National Research
Council (CNR) was nominated as
technical support agency; the newly
constituted Institute for Telematics
Applications (IAT-CNR), created from
a department of CNUCE, is now
responsible for project activities.

The original UNESCO-planned structure
had the mandate to establish five regional
(north, south, east, west and centre) and
ten national nodes. The regional nodes
(sited in Algeria, Kenya, Senegal, Nigeria
and Zambia) had the task of managing
and coordinating the activities of their
region, establishing both regional
connectivity and connections to the
world-wide network.

In a recent meeting of the RINAF co-
ordinators, held during the CARI

IQTension is an unique on-line
system for measuring web tension
contactless and continuously
across the entire width.

TECHNOLOGY TRANSFER

44

Conference in Dakar, October 1998, the
support unit established at IAT-CNR,
Pisa, presented their views on the major
problems to be solved in the African
Continent if research networks are going
to be maintained and improved after the
termination of RINAF activities. These
views are outlined below.

The Data Communication
Infrastructure

Communication costs are by far the most
expensive part of a research network.
Other expenses are the acquisition of the
necessary hardware devices, the software
procedures for providing the end-users
with telematic services, and the costs of

running the services, providing assistance
to users and carrying out training
activities. With respect to more
technologically advanced countries, the
cost of manpower in the African
continent is significantly lower, while the
cost for the communication infrastructure
is normally much higher.

It is harder to run research networks in
Africa than in Europe, since
governmental authorities do not support
them, neither do they provide adequate
support for the telecommunication costs
of the local universities and research
institutions. A number of African
research networks are thus going
commercial in order to maintain the
service infrastructure; this means they
rely on commercial services, provided

by local PTT’s or local Internet Service
Providers, for the transport of data.

The situation in Africa is very mobile
with respect to the data communications
infrastructure; a number of efforts are
currently working on fibre optics cabling
throughout the continent in order to
connect, as a first step, the capital cities.
It is expected that, in the short-medium
term, the strong pressure directed towards
making Africa part of the global
Information Society and, in particular,
the commercial interests involved will
allow the national research networks to
gain from more efficient and less
expensive data transmission capacities.
The reality in Africa is that, in many
cases, international links only reach the
capital cities and some main urban
centres while the rural community is left
isolated. For this reason, radio links and
satellite connections are needed to
overcome the lack of local
communication infrastructures.

Africa must take advantage of the
Internet data transport protocols. The
advantages are:

• adoption of standards which are
widespread, low cost, interoperable,
scalable, etc.

• employment of low cost entry level
solutions which are robust and
supported by the main providers

• insertion in a global technological
effort thus opening up commercial
opportunities to the African ISPs.

Capacity Building

Increased capacity building is needed;
universities and research institutes should
be assisted to maintain services and to
pay adequate salaries to the most
qualified staff. Different models for
capacity building should be considered;
the most successful are those developed
by the Internet SOCiety (ISOC) and by
the TransEuropean Research and
Education Networking Association
(TERENA).

When organizing training courses,
particular attention should be given to
the selection of trainees. Ideal candidates
are highly motivated with an adequate
technical background, and with an

established position within their network
organization once they return.

RINAF has dedicated a considerable part
of the funds allocated for the first project
phase to the organization of regional
network training courses (held in 5
different African sub-regions). Other
training courses will be organized at a
national level.

Content Development

So far, not much has been done in this
respect in Africa. From now on, a
programme aimed at encouraging and
guiding the local content development to
prepare to play a relevant role in the
‘Information Society’ is needed. The
technological gap today does not only
regard the telecommunications
infrastructures but also the information
produced and made available.

The RINAF experience suggests that, in
the interests of Africa, content
development should:

• promote knowledge and cultural
Internet activities as opposed to
commercial ones which are taking off
without the need for incentives

• promote communication between
African nationals and expatriates in
order to favour technology transfer and
create the conditions for the return of
expatriates to their home countries

• support the set up of web services

• promote projects aimed at supporting
the interchange of data and the set up
of common knowledge bases between
a number of African countries.

Funding Models

It is very difficult to define a suitable
funding model for a continent like Africa.
Nevertheless, some general principals
can be laid down:

• each country needs an organization
involving the key players responsible
for running the national research
network

• each country needs a realistic
programme based on available internal
funds and on financial contributions
from external sources

During a practical session of the
RINAF regional course for Eastern
Africa at Moi University in Eldoret -
Kenya , 24-28 February 1997, with
participants from Ethiopia, Uganda,
Tanzania and Kenya.

EVENTS

45

• Africa should set up organizations to
coordinate international affairs/services
and should become an equal partner of
similar European research networking
organizations (TERENA, DANTE,
RIPE, CCIRN etc.)

• last but not least, a coordinated
approach with the international funding
bodies is needed.

■
Please contact:

Abraham Gebrehiwot – IAT-CNR
Tel: +39 050 593 336
E-mail: abraham@uoii.pisa.ccr.it

Tacton
Configurator –
Sales
Configuration
Support
by Lars Bergman

Matching customer requirements with
combinations of components from a
configurable products line is the core
of the Tacton Configurator. As many
companies are moving from selling
products to selling systems this is a
very important area for improving
sales efficiency and effectiveness.
Tacton Configurator has been
developed within SICS, Swedish
Institute of Computer Science, in the
period of 1992 to 1997. The first
industrialized version was released
1997. In 1998 a spin-off company,
Tacton Systems, was established.
Today the new company employs 15
people as a result of a flying start and
rapid expansion. Main customers are
four business units of Ericsson where
some of the applications are in broad
use.

When selling a complex system, as for
instance telephone switching systems,
composition of the ‘right’ system as
viewed from customer needs and pricing
is often a matter of weeks traditionally.
Required is a mass of product
information and input from

knowledgeable people. With an
application based on Tacton Configurator
the reported time for configuring and
pricing is reduced to seconds. This in turn
has impact on the vendor competitiveness
in a sales situation as well as it gives
considerably improved efficiency in the
sales process.

Generic Software

Tacton Configurator is a generic off-the-
shelf software. It is adapted by creating
a product configuration model and by
connecting to other relevant software.
The model is built by using a component
oriented modelling language to describe
configurable and fixed components at all
levels as well as the properties of the
components. Also the conditions for
configuration has to be described in the
model, as well as the parameters of
customer requirements which are used
to drive the end-user dialogue.

Research Base

Tacton Configurator is the result of
research and development in the ISL,
Intelligent Systems Laboratory within
SICS, where the configurator was called
Obelics. Domains to be mentioned are
logic programming and constraints
programming. The powerful and efficient
programming systems SICStus Prolog
and Oz, have been the enabling tools for
the Obelics development. The research
group makes the core of the new spin-
off company, Tacton Systems, with Klas
Orsvärn as the managing director who
defended his thesis on ‘Knowledge
Modelling with Libraries of Task
Decomposition Methods’ in 1996. The
Tacton website can be found at
http://www.tacton.com

■
Please contact:

Klas Orsvärn – Tacton Systems
Tel: +46 8 690 07 50
E-mail: info@tacton.com

CALL FOR PAPERS

Third European Conference
on Research
and Advanced Technology
for Digital Libraries

Paris, 22-24 September 1999

After Pisa in 1997 and Heraklion in 1998,
ECDL’99 will take place in Paris at the
prestigious location of the Bibliothèque
Nationale de France. It is the third of a
series of European conferences on research
and technology for digital libraries.

The conference organisers solicit papers,
panels and tutorials on innovative research
on digital libraries, including but not
limited to:

• digital library models, frameworks, and
systems, interoperability, scalability

• information retrieval, navigation,
indexing, catalogues

• multimedia information management,
digitization (image, graphic, video,
sound)

• electronic authoring, publishing,
m u l t i l i n g u a l i t y

• metadata, knowledge representation,
agent technologies

• experiments in DL system
development, business models for
digital libraries (pricing, etc.)

• user interfaces, evaluation of these
interfaces by users.

Important dates:

• deadline for submission: 1 April 1999

• notification of acceptance: 1 June 1999

• papers due:1 July 1999.

The conference is sponsored by ERCIM;
some scholarships will be provided for
young researchers attending the
conference. Selected papers will be
published in the International Journal on
Digital Libraries. For more information
see the conference website at:
h t t p : / / w w w - r o c q . i n r i a . f r / E u r o D L 9 9 /

■
Please contact:

Serge Abiteboul – INRIA
Tel: +33 1 3963 5537
E-mail: Serge.Abiteboul@inria.fr

EVENTS

46

CALL FOR PARTICIPATION

Electronic Communities –
a New Engine for Regional
Development – Connect ‘99

Trondheim, Norway,
18-20 May 1999

Connect 96, the first global summit on
building electronic communities, took
place at Stanford University in 1996.
Europe was chosen to be the venue for
the next conference in this series. In 1999
Trondheim, hometown of the Norwegian
University for Science and Technology,
will be the venue for Connect 99. T h i s
will continue the exchange of experience
and visions for the future among pioneering
leaders from industry, governmental
bodies, research institutions and the
political arena. The next conference is
scheduled to take place in Japan.

Globalisation and the prevalence of
information technology are predominant
forces that enable economic
decentralisation. The main question at
Connect’99 will be how to utilise the
technology to drive regional economic
development. In particular, the focus will
be on electronic commerce, learning
opportunities and the role of changing
organisations. Modern information
networks provide new ways of
conducting business, and information and
knowledge will be available independent
of geographical location. This will have
a great impact on regional development.

The conference is sponsored by the
Norwegian government, and the opening
address will be presented by the Minister
for Trade and Industry. The conference
programme deals with major issues
included in the Information Society
Technologies (IST) Programme under
the 5th EU Framework Programme,
especially those covered by Key Action
II. The conference will therefore serve
as an important meeting place for
potential participants in the IST
Programme. Conference web site:
http://www.sintef.no/connect99/

■
Please contact:

Conference Secretariat – SINTEF
Tel: +47 73 59 26 45
Fax: +47 73 59 14 12
E-mail: connect99@sintef.no

CALL FOR PARTICIPATION

FMOODS'99 – Third
International Conference
on Formal Methods for
Open Object-Based
Distributed Systems

Florence, Italy,
15-18 February 1999

The goal of the FMOODS conferences
is to provide a forum for the presentation
of activities in three important and
converging fields: formal methods,
distributed systems and object-based
technology.

The convergence of these areas is
evidenced by recent advances in the field
of distributed systems (for example, the
ISO-ODP reference model for Open
Distributed Processing and the work of
the Object Management Group) and is
creating links between several scientific
communities. FMOODS’99 is the third
in the series, initiated in Paris in March
1996 and continued in Canterbury, July
1997. The conference is supported by
IFIP, in particular TC 6/WG6.1, and
sponsored by CNR, EU-DGXIII, and the
Universities of Florence and Bologna. It
will be held in a beautiful site in the hills
overlooking Florence, an easy ride from
the city centre.

The conference programme includes 3
tutorials and 5 invited talks by
international experts on the hot issues of
the fields covered by the conference, as
well as 26 refereed papers. For the
programme and for detailed registration
and accomodation instructions see the
Conference web site:
http://www.dsi.unifi.it/fmoods/

■
Please contact:

Paolo Ciancarini and Roberto Gorrieri,
Programme Co-Chairs – University of
Bologna
Tel: +39 050 354 509
Fax: +39 050 354 510
E-mail: {ciancarini,gorrieri}@cs.unibo.it

Alessandro Fantechi, Organizing Chair –
University of Florence
Tel: +39 05 5479 6265
Fax: +39 05 5479 6363
E-mail: fantechi@dsi.unifi.it

CALL FOR PAPERS

IWOSS'99 – International
Workshop on Similarity
Search

Florence, Italy,
1-2 September 1999

The Workshop seeks contributions
elaborating on all aspects of similarity
search, ranging from theoretical work
(including computational geometry and
learning theory) to practical experiences.
Position papers suggesting new research
directions or specifying new application
needs are of particular interest. Specific
topics of interest include:

• similarity search models and
paradigms

• theoretical aspects and properties of
similarity retrieval and indexing

• complex similarity queries and query
optimization

• similarity search indexes

• performance studies, benchmarking

• approximate similarity retrieval

• similarity search and browsing

• relevance feedback for similarity
retrieval

• similarity search with respect to the
quality of service

• new applications of similarity
retrieval

• practical experiences, etc.

Important Dates:

• abstract submission deadline:
23 March 1999

• paper submission deadline:
30 March 1999

• notification: 25 May 1999

• camera-ready copy due:
15 June 1999.

For more information, see the Conference
Web Site:
http://www-db.deis.unibo.it/IWOSS99

■
Please contact:

Fausto Rabitti – CNUCE-CNR
Tel: +30 050 593 396
Fax: +39 050 904 052
E-mail: F.Rabitti@cnuce.cnr.it

IN BRIEF

47

CALL FOR PAPERS

Fourth ERCIM Workshop
on Formal Methods for
Industrial Critical Systems

Trento, Italy, 11-12 July 1999

The Fourth ERCIM Workshop on
Formal Methods for Industrial Critical
Systems will be held in Trento on July
11-12, 1999, as a satellite meeting of
FLoC’99 - Federated Logic Conference
(see http://www.cs.bell-labs.com/
cm/cs/what/floc99/). The aim of the
FMICS workshops is to provide a forum
mainly for, but not limited to, researchers
of ERCIM sites who are interested in the
development and application of formal
methods in industry. In particular, these
workshops should bring together
scientists that are active in the area of
formal methods and interested in
exchanging their experiences in the
industrial usage of these methods. They
also aim at the promotion of research and
development for the improvement of
formal methods and tools for industrial
applications.

Papers must be in English, no more than
25 pages long,including abstract and
keywords. Electronic submission by
email to fmics@iei.pi.cnr.it is
encouraged provided that the format is
encapsulated standard Postscript
printable by any postscript device.

Important Dates

Deadline for submission: 1 March 1999
Notification of acceptance: 30 April 1999
Final manuscript: 30 May 1999

For further information, see
h t t p : / / w w w . c n u c e . p i . c n r . i t / c n u w e b /
research/resgroups/conc-meth/FMICS/

■
Please contact:

Stefania Gnesi – IEI-CNR
Tel: +39 050 59 34 89
E-mail: gnesi@iei.pi.cnr.it

CWI – Hans van Duijn, leader of CWI’s
research cluster on Modelling, Analysis
and Simulation, and professor in the
Mathematical Analysis of Flows through
Porous Media at Delft University of
Technology, received the Max Planck
Research Award for International
Cooperation. The award of DM 250.000
was presented during a festive ceremony
on 3 December in Bonn. It was granted
in recognition of Van Duijn’s outstanding
research achievements and provided for
cooperation with German scientists over
a period of three to five years.

CWI – a CWI research team led by
Dick Bulterman has won one of the
three main prizes (Hfl 50.000) of the

McKinsey New Venture 98 competition
in The Netherlands for the best business
plan of prospective entrepreneurs in the
research world. The team (Dick
Bulterman, Lynda Hardman, Sjoerd
Mullender, and Jack Jansen) won the
prize with their idea of GRiNS, an
authoring system for multimedia
applications on the Internet (see, eg,
ERCIM News 33, p.45). GRiNS can be
used to develop the full potential of SMIL
(Synchronized Multimedia Integration
Language), which became a W3C
Recommendation in June 1998. There
were over six hundred submissions for
the competition, which was organized in
three rounds by McKinsey in cooperation
with the Dutch universities, research
institutions and the Twinning Network.

CWI – Ronald Cramer received the
Christiaan Huygens Award (Hfl 20.000),
granted by the Royal Netherlands
Academy of Arts and Sciences for the
most innovative Ph.D. thesis over the
past four years in The Netherlands in the

field of Information & Communication
Technology. Ronald Cramer worked at
CWI under Paul Vitányi. After having

completed his Ph.D. thesis on secure, yet
practical cryptographic systems he went
early 1997 to ETH Zürich to continue
research in this direction. Jointly with
Victor Shoup (IBM Research Laboratory
Zürich) he devised a ‘hacker-proof’
encryption system which protects, eg,
Internet transactions against so-called
active attacks (successful attacks on the
best encryption systems so far were
carried out earlier in 1998). The result
was announced at the Crypto’98
conference held in September in Santa
Barbara, California and received wide
publicity.

CWI – Debby Lanser , now a Ph.D.
student in CWI’s research theme on
Numerical Algorithms for Air Quality
Modelling (led by Jan Verwer), received
at Delft University of Technology the
annual prize (Hfl 1.000) for the best
Master’s Thesis in the field of Technical
Mathematics. The work concerned the
modelling and computing of a complex
industrial flow problem.

INRIA – Olivier Faugeras, Research
Director at INRIA and head of the
ROBOTVIS research team at Sophia-
Antipolis adressing the computer-aided
vision issue, has been elected as full
member of the French Academy of
Science. A former graduate of Ecole
Polytechnique, he holds a PhD from Utah
University and from University Paris 6.
He is a part-time professor at MIT and
lectures in various French universities.
His book ‘Three-dimensional Computer
Vision:a Geometric Approach’ has
become a classic.

From left to right: Dick Bulterman,
Jack Jansen, Lynda Hardman (all
CWI), and Morris Tabaksblat,
Chairman and CEO Unilever N.V.

Ronald Cramer (left) receiving the
Christiaan Huygens Prize.

48

ERCIM NEWS

Directeur de Publication: B. Larrouturou
Publication périodique réalisée par GEIE-ERCIM

ISSN 0926-4981

ERCIM Central Office:
Domaine de Voluceau
Rocquencourt
B.P. 105
F-78153 Le Chesnay Cedex
FRANCE
E-mail: office@ercim.org

The European Research Consortium for Informatics and Mathematics (ERCIM) is an
organisation dedicated to the advancement of European research and development, in
the areas of information technology and applied mathematics. Through the definition
of common scientific goals and strategies, its national member institutions aim to
foster collaborative work within the European research community and to increase co-
operation with European industry. To further these objectives, ERCIM organises joint
technical Workshops and Advanced Courses, sponsors a Fellowship Programme for
talented young researchers, undertakes joint strategic projects, and publishes
workshop, research and strategic reports, as well as a newsletter.

ERCIM News is the in-house magazine of ERCIM. Published quarterly, the newsletter
reports on joint actions of the E R C I M partners, and aims to reflect the contribution
made by E R C I M to the European Community in Information Technology. Through
short articles and news items, it provides a forum for the exchange of information
between the institutes and also with the wider scientific community. ERCIM News has
a circulation of 7,000 copies.

GMD –
Forschungszentrum
I n f o r m a t i o n s t e c h n i k
GmbH

Schloß Birlinghoven
D-53754 Sankt
Augustin

Tel: +49 2241 14 0
Fax: +49 2241 14 2889
h t t p : / / w w w . g m d . d e /

Consiglio Nazionale

delle Ricerche

IEI-CNR

Via S. Maria, 46

I-56126 Pisa

Tel: +39 050 593 433

Fax: +39 050 554 342

h t t p : / / w w w . i e i . p i . c n r . i t/

Centrum voor
Wiskunde
en Informatica

Kruislaan 413
NL-1098 SJ
Amsterdam

Tel: +312 05 9 29 3 3 3
Fax: +31 20 592 4199
h t t p : / / w w w . c w i . n l /

Institut National
de Recherche
en Informatique
et en Automatique

B.P. 105
F-78153 Le Chesnay

Tel: +33 1 39 63 5511
Fax: +33 1 39 63 5330
h t t p : / / w w w . i n r i a . f r /

Central Laboratory
of the Research
Councils

Rutherford Appleton
L a b o r a t o r y
Chilton, Didcot
GB-Oxon OX11 0QX

Tel: +44 123582 1900
Fax: +44 1235 44 5385
h t t p : / / w w w . c c l r c . a c . u k /

Swedish Institute

of Computer Science

Box 1263

S-164 28 Kista

Tel: +46 8 633 1500

Fax: +46 8 633 7230

h t t p : / / w w w . s i c s . s e /

Stiftelsen
for Industriell og
Teknisk Forskning
ved Norges Tekniske
Høgskole

SINTEF Telecom &
Informatics
N-7034 Trondheim

Tel :+47 73 59 30 00
Fax :+47 73 59 43 02
h t t p : / / w w w . i n f o r m a t i c s .
sintef.no/

Technical Research
Centre of Finland

VTT Information
Technology
P.O. Box 1200
FIN-02044 VTT

Tel:+358 9 456 6041
Fax :+358 9 456 6027
h t t p : / / w w w . v t t . f i /

Foundation
for Research
and Technology –
Hellas

Institute of Computer
Science
P.O. Box 1385
GR-71110 Heraklion,
Crete

Tel: +30 81 39 16 00
Fax: +30 81 39 16 01
h t t p : / / w w w . i c s . f o r t h . g r /

FORTH
Czech Research
Consortium
for Informatics
and Mathematics

FI MU
Botanicka 68a
CZ-602 00 Brno

Tel: +420 2 6884669
Fax: +420 2 6884903
h t t p : / / w w w . u t i a . c a s . c z /
C R C I M / h o m e . h t m l

Swiss Association
for Research
in Information
T e c h n o l o g y

Dept. Informatik
ETH-Zentrum
CH-8092 Zürich

Tel: +41 1 632 72 41
Fax: +41 1 632 11 72
http://www-dbs.inf.
ethz.ch/sarit/

Slovak R e s e a r c h
Consortium
for Informatics
and Mathematics

Dept.of Computer
Science, Comenius
University
Mlynska Dolina M
SK-84215 Bratislava

Tel: +421 7 726635
Fax: +421 7 727041

Danish Consortium
for Information
Technology

DANIT co/CIT
Aabogade 34
DK - 8200 Aarhus N

Tel: +45 8942 2440
Fax: +45 8942 2443
h t t p : / / w w w . c i t . d k / E R C I M /

DANIT

Central Editor:
Peter Kunz

Local Editors:
Grabriela Andrejkova (SRCIM)
Lars Bergman (SISU)
Erzsébet Csuhaj-Varjú (SZTAKI)
Truls Gjestland (SINTEF)
Michal Haindl (CRCIM)
Fritz Henglein (DANIT)
Bernard Hidoine (INRIA)
Pia-Maria Linden-Linna (VTT)
Siegfried Münch (GMD)
Henk Nieland (CWI)
Carol Peters (CNR)
Martin Prime (CLRC)
Constantine Stephanidis (FORTH)

E-mail:
peter.kunz@ercim.org

andrejk@kosice.upjs.sk
lars@sisu.se
csuhaj@sztaki.hu
t r u l s . g j e s t l a n d @ i n f o r m a t i c s . s i n t e f . n o
haindl@utia.cas.cz
henglein@diku.dk
bernard.hidoine@inria.fr
pia-maria.linden-linna@vtt.fi
siegfried.muench@gmd.de
henkn@cwi.nl
carol@iei.pi.cnr.it
martin@inf.rl.ac.uk
cs@csi.forth.gr

Telephone:
+33 1 3963 5040

+421 95 6221128
+46 8 752 1613
+36 1 209 6990
+47 73 59 26 45
+420 2 6605 2350
+45 35 32 14 02
+33 1 3963 5484
+358 0 456 4501
+49 2241 14 2255
+31 20 592 4092
+39 050 593 429
+44 1235 44 6555
+30 81 39 17 41

You can subscribe to ERCIM News
free of charge by: sending e-mail to
your local editor; posting paper
mail to the address above or filling
out the form at the ERCIM web site
at h t t p : / / w w w . e r c i m . o r g /

Magyar Tudományos
Akadémia –
Számítástechnikai és
A u t o m a t i z á l á s i
Kutató Intézete

P.O. Box 63
H-1518 Budapest

Tel: +36 1 4665644
Fax: + 36 1 466 7503
h t t p : / / w w w . s z t a k i . h u /

SRCIM

