
So
ft

w
ar

e-
In

te
ns

iv
e

Sy
st

em
s European Commission -

US National Science Foundation

Strategic Research Workshop

Engineering
S o f t w a r e -
I n t e n s i v e
S y s t e m s
E d i n b u r g h , U K ,

2 2 - 2 3 M a y 2 0 0 4

Workshop Report and

Recommendations

Report on the
EU/NSF Strategic Workshop on

Engineering Software-Intensive Systems

May 22-23, 2004
Edinburgh, GB

Martin Wirsing
Workshop coordinator and editor

Rémi Ronchaud

Organisational coordinator

Preface

This report contains a summary of the results of the workshop on “Engineering Software-
Intensive Systems”. The workshop was part of a series of EU-NSF strategic research
workshops organised by ERCIM under the auspices the European Commission (programme
IST-FET) and the US National Science Foundation (CISE-NSF division) to identify key
research challenges and opportunities in information technologies. These workshops are
intended to facilitate brainstorming and awareness about potential breakthroughs in
innovative domains, stimulate research activities and scientific discussions of mutual interest.

The workshop on “Engineering Software-Intensive Systems” took place in Edinburgh,
Scotland, on May 23-24, 2004, and was held as a co-located event of the International
Conference on Software Engineering, ICSE 2004. Participation in the workshop was by
invitation only. About 20 leading experts from Europe, the United States and Australia
participated in the workshop. The program consisted of presentations and discussions of
future R&D directions, challenges, and visions in the emerging area of Engineering Software-
Intensive Systems.

As coordinator of the workshop I would like to thank the chairman of ICSE Anthony
Finkelstein for hosting the workshop. I am extremely grateful to Rémi Ronchaud from
ERCIM for all his invaluable work and effort with the preparation and organisation of the
workshop. My warmest thanks go to Axel Rauschmayer for his help in editing this report and
to Hubert Baumeister for his useful comments on this report. Finally, I would like to thank all
participants for their inspiring contributions.

Munich, December 2004 Martin Wirsing

1

2

Summary of Workshop Results

Software has become a key feature of a rapidly growing range of products and services from
all sectors of economic activity. Software-intensive systems include large-scale heterogeneous
systems, embedded systems for automotive applications, telecommunications, wireless ad hoc
systems, business applications with an emphasis on web services etc. Our daily lives depend
on complex software-intensive systems, from banking to communications to transportation to
medicine.

In the near future, software-intensive systems will exhibit adaptive and anticipatory
behaviour; they will process knowledge and not only data, and change their structure
dynamically. Software-intensive systems will act as global computers in highly dynamic
environments and will be based on and integrated with service-oriented and pervasive
computing.

However, actual practice shows that the techniques for engineering software-intensive
systems suffer from many severe deficiencies in quality and methodological shortcomings:

• pragmatic modeling languages and techniques have no clean scientific foundations
which inhibits the construction of powerful analysis and development tools;

• formal approaches are not well-integrated with pragmatic methods and do not scale up
to complex software-intensive systems;

• aspects such as change, adaptation, heterogeneity, quality of service, security, trust,
and highly dynamic and unpredictable environments, are important for software-
intensive systems, but are not well supported by actual engineering methods.

The strategic research workshop on “Engineering Software-Intensive Systems” was organised
in Edinburgh, Scotland, on May 23-24, 2004, with the objective to present and discuss future
R&D directions, challenges, and visions in the emerging area of software-intensive systems.
About 20 leading experts from Europe, the United States and Australia participated in the
workshop and identified research issues and challenges.

The grand challenge is to develop practically useful and theoretically well-founded principles,
methods and tools for engineering high-quality software-intensive systems.

Mastering the complexity of software-intensive systems requires a combined effort for
foundational research and new engineering techniques that are based on mathematically well-
founded theories and approaches. The new methods should support the whole system life
cycle including requirements, design, implementation, maintenance, reconfiguration and
adaptation. Research is required for:

• developing innovative engineering support for software-intensive systems to ensure
required levels of quality and trust;

• putting change and adaptation at all levels of system development;

• developing a science of software-intensive systems;

• bridging the gap between pragmatic development techniques and foundational
validation and verification methods.

3

4

Table of Contents

Preface.. 1
Summary of Workshop Results.. 3
Table of Contents ... 5

Challenges for Engineering Software-Intensive Systems .. 7

Position Statements

Don Batory
Relational query processing as a basis for software design ... 15

Ira Baxter
Design maintenance systems.. 16

Ed Brinksma
Experimental methods for formal design ... 16

Rance Cleaveland
Model-based development for control software development 17

Simon Dobson
Challenges of Pervasive Computing .. 17

Jose Fiadeiro
Physiological and social complexity of software-intensive systems............................ 18

Carlo Ghezzi
Dynamic Software Federations .. 19

Conny Heitmeyer
Verified Software Generation and Composition from Requirements 19

Stefan Jähnichen
Abstraction, adaptation and testing of software-intensive systems.............................. 20

Jeff Kramer
Analysis techniques for self-organizing and pervasive systems 21

Insup Lee
Design techniques for software-intensive systems .. 22

Luqi
Constructing flexible dependable software-intensive systems..................................... 23

Stephan Merz
Development of reliable models and components ... 24

Oscar Nierstrasz
Putting change at the center of the software process.. 24

Karl Reed
Some issues in the engineering of widely deployed software intensive systems......... 25

Vladimiro Sassone
Context-aware software-intensive systems ... 25

Joseph Sifakis
Work Directions in Component-based Engineering .. 27

5

Jeannette Wing
Toward Software Security Design Principles... 28

Workshop Presentations... 29
Martin Wirsing
Engineering Software-Intensive Systems: Introduction... 31

Don Batory ... 36

Ira Baxter ... 40

Rance Cleaveland ... 43

Simon Dobson... 48

Jose Fiadeiro .. 52

Carlo Ghezzi ... 60

Conny Heitmeyer .. 65

Stefan Jähnichen... 68

Jeff Kramer... 73

Insup Lee .. 75

Stephan Merz .. 81

Oscar Nierstrasz... 83

Karl Reed.. 87

Vladimiro Sassone .. 93

Joseph Sifakis ... 98

Jeannette Wing ... 100

Baxter, Heitmeyer, Lee, Merz, Wirsing
Model-Driven Development for Software-Intensive Systems: First Results 104

Don Batory
Workshop Report ... 107

Appendix

A. Workshop Agenda.. 111
B. Participants and CVs .. 113

6

Challenges for Engineering Software-Intensive Systems

1. Introduction

Software has become a key feature of a rapidly growing range of products and services from
all sectors of economic activity. Software-intensive systems include large-scale heterogeneous
systems, embedded systems for automotive applications, telecommunications, wireless ad hoc
systems, business applications with an emphasis on web services etc. Our daily lives depend
on complex software-intensive systems, from banking to communications to transportation to
medicine. Software technology is a driving factor for many high tech products; competence in
software technology defines more and more the innovation capability of the whole industry.

On the other hand, software is undergoing a fast technological progress where object-
orientation, service-orientation, modeling languages such as UML, programming and mark-up
languages such as Java and XML, and CASE tools have considerably influenced the system
development techniques of today. Also formal techniques have undergone a steep
development during the last years. Based on formal foundations and deep theoretical results,
methods and tools have been developed to support specification, design, validation and
verification of software systems. Many other formal specification and verification techniques
have been applied to non-trivial case studies and are used in practice e.g. for the development
of safety critical systems.

However, actual practice shows that the techniques for engineering software-intensive
systems suffer from many severe deficiencies in quality and from methodological
shortcomings:

• pragmatic modeling languages and techniques have no clean scientific foundations
which inhibits the construction of powerful analysis and development tools;

• formal approaches are not well-integrated with pragmatic methods and do not scale up
to complex software-intensive systems;

• aspects such as change, adaptation, heterogeneity, quality of service, security, trust,
and highly dynamic and unpredictable environments, are important for software-
intensive systems, but are not well supported by actual engineering methods.

2. The workshop and its objectives

In May 2004 the workshop on “Engineering Software-Intensive Systems” was held as a co-
located event of ICSE in Edinburgh, Scotland. The workshop was organised by ERCIM, the
European Research Consortium for Informatics and Mathematics with the support of the US
National Science Foundation (CISE-NSF division) and the European Commission
(programme IST-FET). Participation in the workshop was by invitation only. About 20
leading experts from Europe and the United States participated in the workshop.

7

The objectives of the EU-NSF workshop were threefold:

• to discuss the state of the art in engineering software-intensive systems, to evaluate
potential or partial solutions that have been proposed, and to analyze why some ideas
were or were not successful;

• to propose and discuss in a pro-active way innovative approaches and solutions of the

problems and challenges of software-intensive systems and to present visionary and
explorative perspectives and bold ideas for modeling, programming, constructing,
validating, and verifying software-intensive systems;

• to show how pragmatic methods in software-intensive systems engineering can be

integrated with and enhanced by the results of foundational research to handle the new
problems posed by, among others, the requirements of embedded systems, the
different levels of component and system granularity, the heterogeneity of
components, the use of distribution, mobility and communication, and the request for
appropriate human-interface support.

3. The challenges for software-intensive systems engineering

The ongoing decrease in the cost of microprocessors is fueling a “silent revolution” in
computing; far more computing cycles are now devoted to the control of devices, such as anti-
lock braking systems and cardiac defibrillators, than to the running of traditional applications
found in desktop computers. Software systems are becoming increasingly distributed and
decentralized. Applications are composed as dynamic federations of autonomous and
evolving components. Examples are emerging in the area of ambient intelligence, pervasive
ubiquitous computing, and web services.

In the near future, such control- and software-intensive systems will exhibit adaptive and
anticipatory behaviour; they will process knowledge and not only data, and change their
structure dynamically. Software-intensive systems will act as global computers in highly
dynamic environments. They will be based on and integrated with the service-oriented
computing paradigm where services are understood as autonomous, platform-independent
computational entities that can be described, published, discovered, and dynamically
assembled to develop massively distributed, interoperable, evolvable systems.

These newly emerging software-intensive systems present unique challenges to their
developers. On the one hand, they must meet very stringent guarantees of dependability and
reliability, both for business as well as safety reasons. On the other hand, their development
requires interaction between control system and software engineers, whose differing
backgrounds (continuous vs. discrete mathematics) are often a source of confusion and
misunderstanding.

Mastering the complexity of software-intensive systems requires a combined effort for
foundational research and new engineering techniques that are based on mathematically well-
founded theories and approaches. The new methods should support the whole system life
cycle including requirements, design, implementation, maintenance, reconfiguration and
adaptation. The grand challenge is to develop practically useful and theoretically well-

8

founded principles, methods and tools for engineering high-quality software-intensive
systems.
Research is required for:

• developing innovative engineering support for software-intensive systems ensuring
required levels of quality and trust including properties such as reliability, safety,
security, correctness, performance, availability, and dependability;

• putting change and adaptation at all levels of system development including change of
requirements, technologies and environments, as well as self-adaptation and self-
organization of systems;

• developing a science of software-intensive systems;

• bridging the gap between pragmatic development techniques and foundational
validation and verification methods.

In the following, these research issues are presented in more detail.

3.1 Developing innovative engineering support for software-intensive systems ensuring
required levels of quality and trust.
Software-intensive systems are complex programmable systems exhibiting properties such as
adaptive behaviour and dynamically changing structure. Key issues for implementation are
technical aspects such as mastering size, complexity and change, as well as economic aspects
of middleware, business models, and costs. Key drivers for acceptance of such systems are
satisfaction of user requirements, interoperability of products, systems and applications, and
quality issues such as usability, testability, reliability but also security and safety.

Although software engineering methods have matured significantly in the past twenty years,
and have also benefited from advances in object-oriented and component-based development
methods, they do not support well enough the particular problems of software-intensive
systems; problems of actual engineering methods are e.g. insufficient requirements capture
and validation, inadequate treatment of quality and trust properties, or insufficient support of
compositionality and interoperability.

A promising approach for solving these problems is model-based development: models can
serve as a vehicle for communicating information between business process engineers, control
engineers and computer scientists, and can also provide an additional basis for pre-
implementation validation of requirements and quality properties as well as for automatic
generation of source code. However, this paradigm for software-intensive system
development is still in its infancy, with many issues requiring further study for its full and
radical potential to be realized. These include:

• Distributed control systems: Enhancing control-system modeling languages to
support controller interaction is essential for the future. A complicating feature is the
fact that although controllers are digital and independent, the environment with which
they interact is continuous and shared.

• Capturing and formalizing requirements: Capturing and debugging requirements is
one of the main issues for developing high quality software-intensive systems. Usable
formal notations for requirements would enable mechanized support for checking
requirements against models. Requirements should include a mixture of discrete and
continuous mathematics and be executable, so that they may also be debugged.

9

• Compositional design models: The notion of composition is necessary to deal
effectively with designing large complex systems. Compositionality of designs
facilitates sharing of artefacts and should support both homogeneous models and
heterogeneous models.

• Techniques and tools for model debugging, validation and verification. Methods for
assessing model correctness need to be developed, including model checking,
interactive verification as well as analysis techniques based on typing, program
slicing and constraint solving. Techniques lying “midway” between ad hoc testing
and full formal verification should also be investigated.

• Certification based on design: To be able to evaluate the quality of software-intensive
systems, it is necessary to develop a certification process based on sound scientific
foundations which should make it possible to measure quantitatively how well a
system meets its requirements.

Security and trust are main challenges for the software-intensive systems of tomorrow. These
systems will be more complex, built out of more and more mismatched components than
today’s systems, and continue to be rife with bugs. Attackers only need to find one bug to
exploit, but defenders have to find and fix them all. In addition, the environments in which
systems are deployed will be more unpredictable and more malicious. As a consequence,
security will be more and more important for software-intensive systems and will have to be
built into the system by design. Compositional techniques are needed, e.g. to discover
interface mismatches that lead to security flaws or to anticipate emergent abusive behaviour.
Security-respecting software design principles have to be developed such as defence in depth,
principle of least privilege, or security by default. A further grand challenge is the
development of trustworthy software where not only security is considered but also further
aspects including reliability, privacy, and usability.

Summarizing, research is needed for constructing very high quality requirements
specifications and compositional design models, and for guaranteeing critical functional and
non-functional system properties, and in particular for guaranteeing security and trust.
Research topics include:

• new methods for capturing, formalising, and validating requirements;

• modelling languages for distributed control supporting compositional design;

• techniques for guaranteeing quality properties such as security, safety, trust,
reputation, fault tolerance, behavioural, and real-time properties;

• composing heterogeneous components where heterogeneity e.g. deals with interaction,
execution platforms, and legacy code.

3.2 Putting change and adaptation at all levels of system development.
Software systems change or perish in response to changing business needs. In addition, they
are required to evolve dynamically as new components are introduced and as existing
components are removed or fail. Software systems become more complex and fragile as they
age, and more so as network, hardware, and business innovations emerge. In particular,
software-intensive systems are subject to continuous and dynamic change of structure,
requirements, implementation technology and operating environment. As for engineering

10

quality and trust, today’s software engineering practices do not provide adequate support for
system change and evolution of business needs, requirements, platforms, and technologies.

It is therefore necessary to advance beyond the “engineering” metaphor for software
development, and focus more on support for change. Specific areas of opportunity are:

• Self-organising software systems: The objective of self-organising systems is to
minimise the degree of explicit management necessary for construction and
subsequent evolution whilst preserving the required properties and operational
constraints of the system. Sound approaches are needed to support system composition
on the fly and dynamically reconfigurable services, and to help manage change,
especially where it is required to take place in a deployed system.

• Language support for change: present-day languages focus on static design and offer
few mechanisms to support design evolution. It is necessary to develop high-level
languages and mechanisms that can express fine and coarse grained evolution, cope
with radical changes in design, and support the coexistence of multiple running
versions.

• Tool support for change: tools to model, analyse, and transform evolving software
systems are needed. Such tools would support co-evolution of artefacts at various
levels of abstraction, from code through design to requirements. In particular, these
tools should be able to track change and help to modify and store development
artefacts.

• Methodologies for supporting change: although “agile” processes are gaining
acceptance, there is still a great deal of scepticism concerning their applicability to
conventional projects. Research is needed to determine which software practices are
most effective in coping with high rates of change, to reverse engineer the informal
processes and to formalise processes e.g. by defining appropriate meta-models.

Summarizing, research is needed to cope with change and evolution at all levels of system
development including change of requirements, technologies and environments, as well as
self-adaptation and self-organization of systems. Research topics include

• modelling paradigms supporting change;

• methods for easy change through reorganization of code;

• techniques for making systems self-adaptable and self-organizing.

3.3 Developing a science of software-intensive systems.

Several new computing paradigms for software-intensive systems are emerging such as
global, pervasive, and service-oriented computing. Their integration into a scientifically well-
founded engineering approach for software-intensive systems raises a number of fundamental
research questions which should lead to a science of software-intensive systems.

For example in the service-oriented computing paradigm, services are understood as
autonomous, platform-independent computational entities that can be described, published,
discovered, and dynamically assembled for developing massively distributed, interoperable,
evolvable systems. Today, services are being delivered on a variety of computing platforms,
mostly through the web, personal digital assistants (PDA), and mobile phones. In future
scenarios, it will be possible to develop new applications by federating dynamically available
services, without relying on a unique central control authority which would be in charge of

11

the entire process. Rather, a myriad of distributed processes form loosely coupled
organizations that provide dynamically composable services. Federations will be formed by
dynamically exposing new services and composing them in a self-organizing manner with the
aid of an active and cooperative support infrastructure.

In addition, pervasive computing must deal with inherently noisy, imprecise, and inferred
information which may be more or less accurate. Extracting information from real-world data
requires a deep understanding of the physical, logical, and social constraints controlling
external actions, with software able to reason about richly-connected models of tasks and
information. Moreover, for software-intensive systems one will need ways to assess the
environment and the contexts surrounding them, and adapt to their changes.

To make software-intensive systems of these kinds possible many scientific problems have to
be addressed including:

• effectively supporting fully decentralized (peer-to-peer) software architectures even in
fully dynamic scenarios where nodes are mobile and connected via wireless links;

• identifying flexible binding mechanisms to support dynamic and self-organizing
component federations, via service discovery, brokering, and negotiation, etc.;

• specifying, verifying, negotiating, and monitoring quality of services,
• specifying and supporting the notion of context-awareness to support context-aware

services;
• providing ways to design systems stable under perturbation and able to recognise and

react to incorrect decisions, to model dynamic component federations and reason
about their properties;

• providing abstraction, refinement, and interoperability concepts for dynamic process
and component federations.

More generally, foundational research is needed to develop a comprehensive theory for
modeling and analysing software-intensive systems in a systematic system development.
Research topics include

• theories of views and abstractions of systems such as data view, process view,
distribution view, quality of service view, context view, security view, or deployment
view;

• appropriate abstraction, refinement, and implementation relations for analysing and
comparing different views;

• integrating and relating different system models, e.g. core models based on explicit
messages/shared repositories with models for quality of service, transactions with
compensation, and dynamic reconfiguration.

3.4 Bridging the gap between pragmatic development techniques and foundational
validation and verification methods.

One of the main problems of quality assurance of software-intensive systems consists of the
above mentioned gap between pragmatic development techniques and foundational validation
and verification methods. Today, pragmatic system development does not provide powerful,
semantically well-founded validation and verification techniques. In particular, actual
pragmatic development methods do not provide much feedback to requirements and design
decisions although developers need such feedback as early as possible. This problem is partly
due to the fact that existing tools for automated and interactive analysis require specialised

12

expert knowledge, are difficult to use, or do not scale up to the complexity of actual
applications.

Promising approaches for bridging this gap are model-based validation, model checking and
appropriate interactive verification techniques.

Model-based validation is used for testing and verifying executable abstract models. It
consists of developing tests, executable models, and formal specifications of requirements and
designs and to validate them e.g. by using testing, model checking, or interactive verification
techniques.

Model checking is an automated technique for formally verifying concurrent systems where
the validity of a system property is checked by exploring the full state space of the system.
Model checking is successfully used in hardware development and begins now to be used also
for validating software properties. This approach is well-suited for finite state control systems
including real time and probabilistic systems but it is difficult to use for data-intensive
applications. Main difficulties for applying model checking is scalability: to cope with the
“state explosion” problem of the analysis of large systems and the infinite state spaces of data-
intensive applications, abstraction techniques and combinations with other analysis techniques
(such as abstract interpretation, constraint solving and interactive verification) are needed.

Interactive verification techniques have a broad range of data-intensive and control-intensive
applications but are only successful for small applications e.g. in e-commerce or in the area of
certification of software products. For larger software systems, full code verification is
unrealistic. A feasible strategy is to verify design models since models are of considerably
smaller size than source code although models of larger systems may also be too large. Then
model verification needs the reduction of the model to a small “verification kernel” whose
properties hold for the full model.

Summarizing, research is needed for enhancing pragmatic system development with
powerful, semantically well-founded validation and verification techniques and to scale up
novel automated analysis methods to the complexity of actual applications.

Research topics include

• novel techniques for requirements validation, design testing, early test generation,
enhanced model checking, and automated verification;

• methods for automatically assessing model correctness;

• scaling up verification techniques through model transformation techniques and
through combination of model checking and interactive verification with each other as
well as with other analysis techniques;

• the quest for “disappearing formal methods” by providing user-friendly specification
and verification languages, tailoring model checking and verification to modeling
languages, and developing novel transformation techniques for hiding details of
formal specification and analysis.

13

14

Position Statements

Don Batory: Relational query processing as a basis for software design

Software design is a poorly understood art-form. As long as it remains so, our abilities to
automate key tasks in software development are fundamentally limited. Much of the focus
today is on designing, building, and understanding one-of-a-kind systems. While there may be
strong justification for doing so, this orientation has fundamental limitations. Sciences have
never been created by studying singleton entities: theories of atomic physics arose out of
studies of all kinds of atomic phenomena, not just the study of one kind of atom. Theories of
astronomy are based on the study of many stars and galaxies, not just a single star or galaxy.
And so on. A science for software design will arise out of the study of many related systems;
they will be predictive and constructive theories of how software in a particular domain can
be automatically constructed and evaluated. Formalizing well-understood processes in a
particular domain for the purposes of mechanization will raise the level of software quality,
reduce maintenance costs, improve our ability to certify important properties of the software
that is produced. This can be done because we are not solving general problems without
constraints (which historically rarely succeed), but instead we are solving well-defined and
well-understood subproblems with clear and specific constraints.

One of the most significant results in automated software production is relational query
processing (RQP). A data retrieval program is specified declaratively in the SQL language. A
parser maps this specification to a relational algebra expression, a query optimizer rewrites
this expression into a semantically equivalent expression with better performance
characteristics, and a code generator translates the expression into an efficient executable.
Query evaluation programs are represented algebraically as compositions of relational algebra
operators. (This is a classical example of compositional programming). This is also one of the
few significant examples of automatic programming — transforming a declarative
specification into an efficient program.

The RQP paradigm has the right look and feel for the basis of a science of software design.
The domain of query evaluation programs are defined by algebraic expressions. Identities
among operators are the basis for optimizing expressions (and hence program designs)
automatically. Different representations of these programs (e.g., cost models and code) are
derived automatically from their algebraic definitions. And after being scrutinized for over 25
years, the relational algebra approach has survived the test of time and has been broadened to
include many new operators beyond the traditional operators that were identified in the early
1970s.

I believe that the RQP paradigm holds the key to a Science of Software Design. The challenge
is to show how it can generalize to other domains and be able to achieve improved software
quality, reduced costs and better certification.

15

Ira Baxter: Design maintenance systems

Software Systems are growing in size, complexity and utility. This means not only increased
complexity in initial engineering but increased duration and complexity of maintaining the
software in the face of continuously changing functional, performance, context and
technological foundations.

Problems: We desperately need software design/lifecycle models that completely merge the
design and maintenance phases, so that information obtained during « design » is passed
painlessly and seamlessly to « maintenance », and retained accurately. Such knowledge
requires we be able to capture problem domain descriptions and corresponding solutions at
various levels of abstraction and compose them sensibly and straightforwardly. We need
methods to scalably automate analysis and inference over large complex artefacts because
people cannot do this reliably. We need techniques enabling engineers to specify system
changes explicitly and implement these incrementally, using the captured design knowledge
to aid the modification. And we need ways for large teams of engineers to reliably make un-
coordinated changes in parallel.

Solutions: We believe the key technologies to achieve this include generalized compiling plus
program transformation over domain-specific languages at multiple levels of abstraction,
coupled with design decision and rationale capture. Formal semantics will provide the means
for gluing specifications in multiple formalisms together in a well-founded whole. Design
decisions as chosen-branch of multiply-refinable concepts will be implicitly satisfy functional
semantics and explicitly justified by performance specifications. Reasoning costs will be
alleviated by applying compiler-like optimizations and parallel computing to symbolic
inference processes. Capture of design histories will enable incremental updates using
distributive algebraic laws derived from domain semantics. Design information must be
captured in databases with long-term transactions to enable long-term changes. (Semantic
Designs is attempting to reify some of these ideas in commercial tools).

Ed Brinksma: Experimental methods for formal design

Formal models are to play an increasing role in controlling the quality and complexity of
software-intensive systems, as is apparent from the growing prominence of the qualifier
"model-driven", as in model-driven architecture, model-driven test generation, etc. Research
in computer science has concentrated on what can be achieved on the basis of good models,
and not on the issue of how to obtain good models.

In practice, models are often the result of some form of "hacking", and the results of their
application correspondingly unreliable. We argue that not formal but experimental and
informal methods are the key to obtaining good models that form the basis of formal design
activities.

16

Rance Cleaveland: Model-based development for control software
development

The ongoing decline in the cost of microprocessors is fueling a “silent revolution” in
computing; far more computing cycles are now devoted to the control of devices, such as anti-
lock braking systems and cardiac defibrillators, than to the running of traditional applications
found in desktop computers. These newly emerging control- and software-intensive systems
present unique challenges to their developers. On the one hand, they must meet very stringent
guarantees of dependability and reliability, both for business as well as safety reasons. On the
other hand, their development requires interaction between controls and software engineers,
whose differing backgrounds (continuous vs. discrete mathematics) are often a source of
confusion and misunderstanding. Model-based design is showing promise as a solution to
this problem: models can serve as a vehicle for communicating information between
engineers and computer scientists and can also provide a basis for pre-implementation
validation as well as for automatic generation of source code. However, this paradigm for
control software development is still in its infancy, with many issues requiring further study
for its full and radical potential to be realized. These include:

• Distributed control systems. Enhancing control-system modeling languages to
support controller interaction is essential for the future. A complicating feature is the
fact that although controllers are digital and independent, the environment with which
they interact is continuous and shared.

• Formalized requirements. Usable formal notations for capturing requirements, and
checking requirements against models, would enable mechanized support for checking
requirements against models. Requirements should include a mixture of discrete and
continuous mathematics and be executable, so that they may also be debugged.

• Techniques and tools for model debugging, validation and verification. Methods
for automatically assessing model correctness need to be developed, including ones
based on program slicing and constraint solving. Techniques lying “midway”
between ad hoc testing and full formal verification should also be investigated.

Simon Dobson: Challenges of Pervasive Computing

Pervasive computing allows designers to build information systems that both react and adapt
to real-world conditions. At a shallow level this allows us to improve usability by matching
services closely to the tasks they are being used to fulfill. At a deeper level, pervasive
computing blurs the distinction between atoms and bits to allow actions to simultaneously
have physical and informational content. A number of new challenges are presenting
themselves.

Firstly, pervasive computing must deal with inherently noisy, imprecise and inferred
information which may be more or less accurate. These uncertainties typically cannot be
eliminated by further analysis, so systems must be stable under perturbation and able to
recognise and react to incorrect decisions – essentially being designed under an assumption
of incorrectness, leading to new ways to think about, describe and handle exceptional
conditions. Secondly, extracting information from real-world data requires a deep
understanding of the physical, logical and social constraints controlling external actions, with

17

software able to reason about richly-connected models of tasks and information. In many
cases the underlying networks and logics remain to be discovered. Thirdly, mobility and
dynamism mean that pervasive computing systems ‘meet each other’ in unexpected ways. We
need to be able to describe these interactions at a high level of abstraction, not simply as
shared interfaces. In some ways this re-opens the field of semantics, in that we need to
consider ‘open denotations’ of systems that will meet some parts of their functionality as
they evolve. Finally, pervasive systems need to adapt their behaviour largely autonomously
within a design envelope. We have little understanding of how to describe envelopes or
adaptation strategies – and even less of how to prove properties about them, which is a vital
component of both usability and safety.

In many ways pervasive computing re-visits existing concerns with an increased stress being
placed on dynamism, rich interconnections, stability and interaction. Addressing these
concerns may therefore have a general impact on the development of complex software
systems.

Jose Fiadeiro: Physiological and social complexity of software-intensive
systems

In our day-to-day, we use the term “complex” in a variety of ways. Many times, we apply it
to entities or situations that are “complicated” in the sense that they offer great difficulty in
understanding, solving, or explaining. There is nothing necessarily wrong or faulty in them;
they are just the unavoidable result of a necessary combination of parts or factors ; their
complexity is « physiological ». In other circumstances, complexity derives more from the
number and “open” nature of interactions that involve “autonomic” parts. Social systems are
inherently complex in the sense that it is almost impossible to predict what properties can
emerge and how they will evolve as a result of the interactions in place or the dynamics of the
population itself.

This same distinction between physiological and social complexity also applies in software
engineering. Software applications can be very complex entities in the sense that they may
require an intricate interlacing of parts to provide the solution to a problem; the problem may
be simple to understand and formulate but the nature of the parts available to build a solution
may be such that the process of construction and the resulting application are complex. On
the other hand, even very simple software applications may be required to take part as
components of large and intricate systems in which they have to interact in often-
unpredictable ways.

Social complexity of software is much more recent but becoming a prevailing trait. Software
systems are now pervading key areas for the day-to-day functioning of our society. They are
required to participate in heterogeneous networks of physically distributed and dynamically
changing locations connected through often-unreliable communication infrastructures.
Hence, software engineering is now facing the challenges that more traditional science and
engineering disciplines have known for years.

However, much of the social complexity of software-intensive applications is being addressed
with concepts and techniques developed over decades to address physiological complexity. A
typical example is the use of object-orientated methods and languages for service-oriented

18

computing. The talk will discuss the difference we see in these two levels of complexity and
the forms of formal support that we can provide to address them. Our ultimate goal is to
contribute to the effort of developing methods and tools that can address social complexity in
software intensive systems from first principles.

Carlo Ghezzi: Dynamic Software Federations

Software systems are becoming increasingly distributed and decentralized. Applications are
composed as dynamic federations of autonomous and evolving components. Examples are
emerging in the area of ambient intelligence, pervasive ubiquitous computing, and WEB
services. Component technology and middleware have maturing to support the kinds of
software architectures that are needed in these contexts. Although we are still in the initial
stage, the trends towards increasing flexibility, evolution and decentralization will continue.

In future scenarios, it will be possible to develop new applications by federating dynamically
available services, without relying on a unique central control authority which would be in
charge of the entire process. Rather, a myriad of distributed processes form loosely coupled
organizations that provide dynamically composable services. Federations will be formed by
dynamically exposing new services and composing them in a self-organizing manner, with
the aid of an active and cooperative support infrastructure.

Many problems have to be addressed to make scenarios of this kind possible. A possible
research agenda includes:

1. Effectively supporting fully decentralized (peer-to-peer) software architectures even
in fully dynamic scenarios where nodes are mobile and connected via wireless links;

2. Identifying flexible binding mechanisms to support dynamic and self-organizing
component federations, via service discovery, brokering and negotiation, etc.

3. Specifying, verifying, negotiating, and monitoring quality of services;
4. Specifying and supporting the notion of context-awareness to support context-aware

services;
5. Providing ways to model dynamic component federations and reason about properties

(such as quality of service and context-dependent behaviour);
6. Supporting distributed workgroups contributing to the virtual marketplace of services;
7. Understanding software business models in highly decentralized marketplaces and

supporting federated processes.

Conny Heitmeyer: Verified Software Generation and Composition from
Requirements

My vision is that, in the future, software developers in a given domain (e.g, avionics, medical
devices, automotive) will specify the requirements of a system or component in a standard,
user-friendly, domain-specific language with a sound formal semantics. Specifications in the
language will provide the basis for formal analysis and simulation (symbolic execution of the
specification). Developers will have available an integrated suite of domain-specific tools to
automatically analyze specifications for well-formedness and application properties, (e.g.,
safety and security properties). Tool feedback will be in terms of the standard language.
When a developer has high confidence in the specification’s correctness, technology will be

19

available (e.g., a verified compiler, on-the-fly verification) that transforms large parts of the
specification (e.g., the control logic, simple functions) into provably correct, efficient code.
Technology will also be available for composing synthesized code with other code (e.g.,
legacy code, COTS, standard domain-specific software components, code for abstract data
types, hand-coded software) so that (not always possible) the composite satisfies the
component properties. Developers will also have available technology integrating testing and
formal analysis and will use the technology to gain high confidence that software integrating a
set of heterogeneous software components satisfies the requirements.

Major problems include: lack of standard requirements specification languages and models,
difficult-to-use formal analysis tools, failure to integrate testing and formal verification, lack
of standard domain-specific software components, lack of verified compilers.

Major opportunities: Program managers, especially those responsible for safety-critical
software, are most interested in tools/techniques/methods (e.g., automatic test case
generation) that provides high assurance of a software product’s correctness.

Where is more research needed: languages/models for requirements specification; techniques
that extract requirements from legacy code; verified compilers; models, tools, and techniques
for specialized domains, measures for assessing the quality of a requirements specification or
a software component, and a theory of software testing.

Stefan Jähnichen: Abstraction, adaptation and testing of software-intensive
systems

In the next ten years, software will continue to play an increasingly dominant role in the
development and deployment of new and innovative systems. Its easy producibility, and in
particular its reproducibility, make it necessary – for a number of different reasons (cost,
investment, training, maintenance) – to use software to make complex mechanical, electrical
and even pneumatic components more universal, and thus ultimately make them cheaper to
produce.
But there is no such thing as a free lunch, and producing and adapting software turns out to be
an extremely complex problem, especially from the point of view of quality. I wish to focus
on three aspects of this problem which will attract increased attention in the future (meaning,
of course, that additional research will be needed) and on whose mastering competitive
advantages and market penetration will ultimately depend.

1. The level of abstraction of our means of description
It is a well-known fact the level of abstraction of today’s programming languages is too low
(i.e. too detailed and too strongly oriented to machine-processing). The development of
mathematically based modelling languages, and in particular the availability of accepted
modelling notations (e.g. UML), is a step in the right direction, but it also highlights the
dilemma that exists between neat mathematical calculus and application-oriented – and in
some cases graphical – notations. A way out of this dilemma is offered by work on model-
based architectures, which attempts both to provide neat notations – in semantic terms, too –
for developing systems and, based on this, to generate executable code or at least code
fragments. This work will acquire increasing importance and, provided we succeed in hiding
the generation process itself, will yield directly executable modelling languages.

20

2. Adaptation and reuse of existing code or code fragments
The vast number of existing software systems makes it impossible to constantly redevelop
systems. It is absolutely essential to continuously further develop this software cost-
effectively and adapt it to increased quality requirements. This is where the approach using
model-based development techniques comes in again. If it proves possible, at least on the
level of the modelling languages, to subsequently produce – or, even better, to generate – a
behaviour and architecture description, this will enable new functionalities or
features/characteristics/properties of the software to be validated for test purposes, at least by
simultaneously executing the specification (or specification-based code) and the modified
existing code. Here, replacing the existing code is unlikely to be an option, especially for
reasons of efficiency.

3. Verification vs. testing
In the near future, I do not expect it to be possible to formally verify arbitrary code artefacts
and thus prove their correctness. This means that quality assurance by means of systematic
and comprehensive testing will continue to be very important. This is particularly true in
cases where software is a major component of technical systems and the interplay of the
different components (in their different models) is of great importance. For example: How do
I test a vehicle where a garage has installed a new gear box containing new microprocessors
and new software?

The importance of software in technical systems will continue to grow even more, forcing
software engineers to increasingly assume responsibility for the system, and thus for system
integration. To this extent, there are bound to be changes in the area of systems engineering,
and research will have to devote substantial resources to addressing the question of system
architectures and system integration. And here, too, the dominant issues will be quality
assurance and productivity.

Even in the future, the engineering of software-intensive systems will not be marked by
quantum leaps in terms of methodology, but rather by the continuous refinement of existing
methods – but then that is an essential characteristic of engineering.

Jeff Kramer: Analysis techniques for self-organizing and pervasive systems

Self-organising software systems

Most systems are required to be capable of evolution, many being required to evolve
dynamically as new components are introduced and as existing components are
removed or fail. The objective is to minimise the degree of explicit management
necessary for construction and subsequent evolution whilst preserving the required
properties and operational constraints of the system. How can we provide a sound
approach to help manage such change, especially where it is required to take place in a
deployed system?

System Models and Analysis
Models provide the basis for design and analysis in engineering. In computing,
approaches such as model checking have been very successful in checking whether or
not a proposed software design satisfies its desired behaviour properties. Furthermore,

21

models have the potential to support other forms of analysis – such as performance
and reliability - and feedback though animation, scenario replay, test generation,
conformance testing, and simulation. However, model building (or synthesis) and
analysis is difficult and has yet to make a significant impact on practice. How can we
facilitate the process of model construction ? What forms of analysis are amenable to
tool support and application?

Pervasive Computing
Most current access to computing power and the internet is via fixed office or home
based PCs. Mobile communicators which integrate voice, video and processing
capabilities with wireless communication are likely to replace the current mobile
phones in the future. These will not only be used for personal communications and
internet access, but will interact with intelligent sensors and actuators embedded in our
homes, offices, transportation systems and even within or on the body to form a
mobile ubiquitous computing environment. How should such systems be constructed,
managed and customized ? What are the QOS, security and confidentiality issues?

Insup Lee: Design techniques for software-intensive systems

To improve the quality of software-intensive systems, it is necessary to develop better design
techniques and paradigms. Challenging issues for supporting such design paradigms are as
follows:

• Eliciting formal models from informal requirements: The development of most systems

starts with informal requirements that specify how the system (consisting of hardware and
software), and the user and environment are expected to behave and their interactions.
Research is needed to facilitate the elicitation of a design from such informal
requirements.

• Design Model validation: The design must be verified and validated to ensure it is correct
and consistent with its intended purposes. There is much work to be done on how to
validate that models captured in design artifacts are indeed the ones that are intended.

• Multiple uses of modeling artifacts: We need to explore ways to reuse the various design
artifacts throughout the other development phases so that investments on design
specification and analysis pay off directly in the final product development. The potential
promising areas include the use of models for automatic test generation and code
generation, as well as the use of logical properties proved at design time for run-time
verification.

• Sharing of modeling artifacts: I believe that it is easier (in theory) to share design models
than code. This is because models are at higher level of abstraction than code, and thus,
tied less with target platforms. There has not been much support and effort with open
model (a la open source) development so far. Such an endeavor should help to elevate
design based on formal methods into main-stream activities.

• Composable design models: The notion of composition is necessary to deal effectively
with designing of large complex systems. The composition of design can also facilitate
sharing and should be for both homogeneous models or for heterogeneous models. We
need to start investigating how to compose designs with different purposes (e.g., one
design model for the physical layout of a sensor network and another design model for the
protocol used between sensor nodes) to determine interaction between different views and
to understand the overall design.

22

• Certification based on design: To be able to evaluate the quality of software-intensive
systems, we need to develop a certification process based on sound scientific foundations.
With proper scientific foundations, it should be possible to measure quantitatively how
well a system meets its requirements

Luqi: Constructing flexible dependable software-intensive systems

Our ultimate goal is to consistently produce software that is flexible, low cost, and
dependable. It must be able to support systems that require data to be processed within strict
deadlines. It must also support systems where the software has been designed specifically to
control physical devices. Lastly, it must also be able to handle systems that rely on
communication between many interconnected modules that can be reconfigured as needs
changes. Software is not used in isolation; it is often added into larger systems with unknown
properties. It must be able to work with older elements, access key processes from them, and
integrate them to perform tasks for the system’s users. We work toward these qualities by
using modeling, developing systematic engineering methods, and computer automation to
ensure that as much of the development as possible follows principles that are known to work,
both in prototyping and final designs.

Realization of this ideal requires coordinated advances in much of the current field. For
example, in infrastructure, areas for improvement include better integration and
communication between different software tools, network communication with predictable
delays, and accurate information transfer between contexts with different purposes and
different data models. In engineering, areas to focus on include modeling of strategies for
design, standards for interoperability, increased automation and diagnostics, methods for
effective reasoning support, models for software reconfiguration, and architectures that can
handle many different problems with the same design structure. For coordination, we need
better control of software risks, techniques to improve requirements, aid for determining
design rationale, more reliable approaches to system security, and support for collaboration
between groups of human experts and automated systems.

Benefits resulting from these directions include more effective cooperation between military
and civilian systems, robust safety-critical systems that can adapt to overcome failures and
changing needs, improved software safety, more secure electronic commerce, and many
others.

In order to obtain practical results, all of these advances will have to be incorporated into a
single coherent system. Ensuring that everyone’s numbers and standards match both reality
and each other is paramount. People must be trained to both work with this system and
improve upon it in order to successfully produce tangible achievements.

23

Stephan Merz: Development of reliable models and components

As outlined in the motivations for the workshop, the process of software development has
undergone significant changes during the past ten years, characterized by concepts such as
component-based design, emphasis on expressive modelling languages, integrated
development of models and code, agile development processes, architectural patterns etc.
Despite of this, software bugs are still commonplace. I believe that more research is necessary
concerning the applicability and integration of formal methods with development processes.
This will require progress from both sides: state-of-the-art methods of system design are not
based on clear and sound semantic foundations. On the other hand, formal methods still have
problems of scaling up to realistic systems and they often do not take into account the
paradigms of modern software design, such as components or patterns. Much progress has
been made in the area of software model checking, based on techniques of abstraction and
automatic program analysis, but a better integration of deductive tools based on different
technologies is needed to effectively support top-down system development. The second
challenge requires more conceptual research into the semantic foundations of software
architectures, components, and connectors that give rise to efficient analysis and verification
methods. Research in these areas should be accompanied by concrete case studies and should
give rise to prototypical implementations, with the objective to give software engineers the
benefit of mathematical assurance while presenting models and artefacts at an adequate level
of abstraction.

Novel application areas and programming paradigms constitute a second important area for
research. Inevitably, many concepts that are being suggested will not survive the test of
reality. However, applications such as security-sensitive systems (control of access and/or
information flow) or paradigms such as mobility of code or aspect-oriented design appear
important enough to warrant additional research on both sides of the divide between software
engineering and formal models.

Oscar Nierstrasz: Putting change at the center of the software process

Although software engineering practices have matured significantly in the past twenty years,
and have also benefited from advances in object-oriented and component-based development
methods, software productivity and quality generally continue to fall short of expectations,
and software systems continue to suffer from signs of aging as they are adapted to changing
requirements.

These phenomena are not surprising if we consider that the “waterfall” model is today still the
predominant model for industrial software development projects, and that software
“maintenance” is still undervalued in relation to initial development. What is wrong with this
picture is that change is not placed in the centre of the software process. We know full well
that real software systems must change or perish in response to changing business needs, that
software systems become more complex and fragile as they age, and that this cycle is rapidly
shortening as hardware and business innovations emerge. We must therefore advance beyond
the “engineering” metaphor for software development, and focus more on support for change.

Three specific areas of opportunity are:

24

1. Programming languages: present-day languages focus on static design, and offer few
mechanisms to support design evolution. We need research into high-level languages
and mechanisms that can express and cope with radical changes in design.

2. Development tools: we need tools to model, analyse and transform evolving software
systems. Such tools would support co-evolution of artefacts at various levels of
abstraction, from code, through design to requirements.

3. Processes: although “agile” processes are making inroads, there is still a great deal of
scepticism concerning their applicability to conventional projects. Research is needed
to determine which software practices are most effective in coping with high rates of
change.

Karl Reed: Some issues in the engineering of widely deployed software
intensive systems-functional variation

The issue of dynamically linking different versions of components between successive
executions of a systems is relevant to component based systems. The idea is not new, and
many early systems provide for this capacity. Often discussion refers to functional variation.
In principle, this seems to be the opposite of properly engineered software. However in
practice modern systems have such large volumes of functionality that users may be
surprised by the “miraculous” appearance of hitherto (existing) but unknown functions. From
the users perspective, whether or not this functionality was already present or was
dynamically included since last execution is immaterial. In practice, users deal effectively
with quite large functional variation in this context.
We suggest that there are a relatively wide number of classes of functional variation which
can be identified. Some mechanisms for protecting the user from the effects of unexpected
functionality variations,are suggested, and as are mechanisms for extending a systems
capabilities based upon these variations. We point out that identifying unexpected behaviour
is important in safety-critical systems design, and that approaches from fault tolerance may be
used to deal with such change. The concept of an operational envelope is proposed as one
way of dealing with changes, and whose impact, may need to be accepted or rejected. We
conclude by suggesting that the scale of functional variability that can be tolerated my be seen
by studying users reaction to systems with large amounts of apparent variability.

Vladimiro Sassone: Context-aware software-intensive systems

Our society increasingly depends on open-ended, global computing infrastructures consisting
of millions of individual components. Third-party computation, whereby migrating software
and devices execute on networks owned and operated by others, lies at the very heart of the
model, and will soon be the norm. Countless `pervasive' devices equipped with limited
resources and computational power will roam the network, and support end-to-end
applications which far exceed the devices' own capabilities. In such a scenario, the notion of
`third-party resource usage' will rise to unprecedented centrality.

From the point of view of their owners, resources will need to be advertised, made available,
managed, protected, and priced, while from the user's viewpoint, they will have to be

25

discovered, explored, acquired, used according to rules, and paid for. The complexity of
`digital communities' of such kind is rapidly growing beyond that of other man-made artifacts,
and will reach that of natural social systems. The software-intensive mechanisms involved
exceed by far our ability to design, comprehend and control, and are by and large the limiting
factor to building and deploying innovative applications. Although we are able to analyse and
explain the behaviour of each single component and each single component's interface, we are
essentially clueless when willing to analyse – and less than ever predict! -- the system as a
whole. This is not dissimilar from trying to make a prediction on, say, house prices growth, on
the basis of our perfect understanding of the mechanisms at the root of market economies.

As we grow accustomed to rely on such systems for things as precious as human lives, their
lack of robustness and vulnerability become unacceptable. We need to design and develop for
safety, as we currently design for efficiency and for reuse. The impact of these demands on
engineering software intensive systems – and actually on Computer Science as a discipline –
is dramatic. Scalability is of course a very present issue, intrinsically accompanied to our
specific `globality' hypotheses, but by no means the only one. More generally, ubiquitous
software systems are exposed throughout their lifetimes to the great variability of their
operating environments, of which they have a very partial knowledge to start with. Change in
scale is only one particular case of variations arising from a potentially unbounded number of
different sources: new agents' arrivals or service deployment, connections and systems
failures, new resource distribution and pricing schemata, and so on. For the purpose of this
discussion, we will comprehend them all by the term context-awareness. Software systems
will need ways to assess the contexts surrounding them, and adapt to their changes.

Recent approaches to context-awareness rely on powerful middleware, from which the
software can `read out' all sort of interesting information about the environment. This appears
unrealistic in general, and likely to presume too much of middleware's flexibility. In our
intended scenario, we need to stage substantially faster and more feasible reactions to
unforeseen events than getting back to the middleware design table. In other terms,
middleware mustn't barely support context-awareness; rather, it must support design and
programming for context-awareness. I discuss below an approach based on trust.

The idea of third-party resource points towards a model based on negotiation and protection
of resource bounds, whereby owners and users dynamically agree on transient resource
allocations. This latter is to be realised against resource pricing policies, whereby users agree
to pay for their resource usage. As perfect knowledge is a rare commodity in global networks,
such allocations will rely on risk assessment based on resource values and on the clients'
trustworthiness. A server with a degree of trust in a client may be willing to lease it a resource
at a certain price. Lower trust levels may mean higher prices, or refusal to interact altogether.
Dually, a client must trust a server before entering negotiations with it, or using potentially
harming resources received from it. Risk assessment may be based on a novel concept – yet to
be discovered – of `program reputation,' that is a measure of code's past `good behaviour.'
Reputation will change in time as a result of interactions as observed by the digital
community, and so will systems' trust assessment and, thus, decisions. This gives rise to a
number of unresolved issues:
• How do resource owners specify their resource usage policies?
• How do host and client code interact to determine resource requirements and bounds?
• What safety and robustness provisions can be made for both hosts and clients?
• How can the host trust the guest code not to abuse the resources made available?

26

• What is an appropriate pricing model for resource usage and how does cost negotiation
take place? None of these questions are, as yet, resolved.

I advocate an approach to context-awareness based on trust and reputation management.
Systems will explore contexts as resource providers, by relying on a notion of context
reputation. Reacting to contexts' changes, upon trust evaluation, systems will carry out self-
inflicted actions dealing with configuration, healing, maintenance, runtime extension. Such
`autonomic' behaviour addresses scalability in a novel way, as a risk-assessed reaction to
context variations.

These challenges make the tasks of software design, implementation, validation and
maintenance even more troublesome than usual. They require the acquisition of a suitably
general conceptual understanding of infrastructures, computational models, and language
mechanisms, and breakthroughs are needed at all levels. There should be core computational
models which identify flexible and robust notions of context and trust. Foremost, we need to
develop a model of trust suitable for global systems based on third-party computation, as
those envisaged here. We also need a computationally feasible notion of reputation. For
instance, the reputation of entity E could be (an approximation of) the average trust in E over
a local fragment of the global network. We then need to identify abstractions suitable to
design programming languages, together with development tools to reduce the frequency of
bugs, and tools for both qualitative and quantitative analysis. Solid theoretical foundations
should ensure safety and security properties. Infrastructure and virtual machine technologies
which support resource usage monitoring, global trust evaluation, pricing and negotiation
need to be built. Compilation techniques targeted at resource conscious architectures should
be investigated. Novel static analysis techniques to alleviate the execution cost of runtime
monitoring should be employed.

Joseph Sifakis: Work Directions in Component-based Engineering

Theoretical frameworks for component-based engineering should include satisfactory
solutions to two problems: The first is theory for composing heterogeneous components. The
second is theory for establishing correctness by construction, to cope with complexity. We
discuss work directions and present a general framework for jointly addressing these two
problems.

There exist, two specific sources of heterogeneity: interaction and execution.. Heterogeneity
of interaction results from the presence of interactions that may be atomic or non atomic,
blocking or non blocking. Heterogeneity of execution can be characterized by the way threads
are scheduled. Synchronous and asynchronous execution reflect different scheduling policies.

Building systems that by construction meet given properties requires in principle, two types of
rules:
• Composability rules allowing to infer that under some conditions, components’ properties
are preserved when they are integrated in larger systems.
• Compositionality rules allowing to infer a system’s properties from its components’
properties.

27

The framework presented adopts a principle of layered description of components, consisting
of three layers corresponding respectively to behaviour, interaction and execution models.
Using layered descriptions allows the definition of a general associative composition operator
as well as composability and compositionality results for deadlock-freedom.

Jeannette Wing: Toward Software Security Design Principles

The biggest challenge for the software engineering community is software design. We know
how to teach good programming practice. We know how to write, test, analyze, debug, and
verify code. But we do not know how to do any of this for software designs. As a result,
practitioners see little value in doing design: they don't know how to do it and they don't know
if what they've done is good or not.

The biggest challenge for the software intensive systems of tomorrow is security. Our
software is more complex, built out of more and more mismatched components, and continue
to be rife with bugs. The environments in which systems are deployed are more unpredictable
and more malicious. The attacker only needs to find one bug to exploit. The defender has to
find and fix them all. Impossible.

I propose a research agenda that looks at software security design. This agenda had the
advantage of not trying to solve the whole software design problem, but one more focused on
security. This agenda also has the advantage of moving the security community to focus on a
level above the code; in principle we have technical and practical solutions to fixing buffer
overruns and other code-level bugs. It is time now to look at design-level vulnerabilities.
Attackers already structure their attacks by using the functionality of one component to enable
the functionality of another, to enable the next, and so on; this sequence of actions can look
benign until the very last step, when the attacker achieves his goal.

Toward the goal of understanding software security design, I suggest we look at (1)
compositionality of system components; e.g., when does an unintentionally composed system
lead to emergent abusive behavior? and (2) software security design principles; e.g., do we
build systems following the End-to-end Argument or Principle of Depth in Defense, and how
do we design systems when security properties slice through abstraction boundaries?

28

Workshop Presentations

Martin Wirsing
Engineering Software-Intensive Systems: Introduction... 31

Don Batory ... 36

Ira Baxter ... 40

Rance Cleaveland... 43

Simon Dobson .. 48

Jose Fiadeiro.. 52

Carlo Ghezzi... 60

Conny Heitmeyer.. 65

Stefan Jähnichen .. 68

Jeff Kramer... 73

Insup Lee .. 75

Stephan Merz.. 81

Oscar Nierstrasz... 83

Karl Reed.. 87

Vladimiro Sassone.. 93

Joseph Sifakis ... 98

Jeannette Wing ... 100

Baxter, Heitmeyer, Lee, Merz, Wirsing
Model-Driven Development for Software-Intensive Systems: First Results......................... 104

Don Batory
Workshop Report ... 107

29

30

Engineering Software-Intensive
Systems:

Introduction

Martin Wirsing
LMU Munich

EU-NSF Strategic Workshop Series

• Joint initiative of CISE-NSF and FET-EU
• Organized by ERCIM
• Goals:

Identify key research challenges and opportunities in Information Technologies

• This workshop is part of the series:
SW-intensive systems considered as topic for EC 7th framework programme

31

Engineering Software-Intensive Systems

Situation
• Daily life depends on complex SW-intensive systems

in banking, communication, transportation, medicine, …
• New emerging technologies

Global computation systems
Internet, Grid, pervasive computing …

Embedded systems
automotive, avionics, …

Engineering Software-Intensive Systems

• Fast technological progress
Modeling languages and CASE tools
Object-orientation, programming environments
Model checking, proof carrying code, …

• But clash between
Foundational modeling Pragmatic SW solutions
generic/ deep understanding complete, executable
but but
too abstract, partial, incomplete inconsistent, not reliable, not interoperable
… not well structured …

32

Engineering Software-Intensive Systems

Challenges:
SW-intensive systems need to

• model correctly data and processes and have adequate system architecture

• ensure quality, i.e. reliability, safety, security, availability, dependability,
compliance with the system requirements, …

• support distribution, mobility, heterogeneity and interoperability

• managing change, reconfiguration and adaptation, and

• enhancing the usability

• Integrate and adapt legacy software

EC FP7 Preparation

Foundations of Software-Intensive Systems is a grand challenge
[Report by Hermenogildo, Sifakis, Babagliou]

This includes

• Guaranteeing non-functional properties, such as: security, safety, scalability,
resource optimisation, quality of service, efficiency, selfishness etc.

• New, high-level paradigms and languages for programming encompassing
distribution, mobility, dynamic evolution, and taking into account non-functional
properties.

• New algorithmic techniques for distributed systems, taking into account non-
functional properties.

33

Engineering Software-Intensive Systems

Objectives of this workshop:
• discuss and evaluate the state of the art in engineering discuss the state of the

art in engineering software-intensive systems, ,

• Identify and elaborate challenges for software-intensive systems,

• show how pragmatic methods can be integrated with foundational research
in software-intensive systems engineering

Agenda

Saturday, May 22
9:00 - 9:30 The ERCIM workshop series by Remi Ronchaud

Introduction by Martin Wirsing

9:30 - 10:30 Presentations of challenges and research issues by participants

Don Batory, Carlo Ghezzi, Connie Heitmeyer, Luqi

11:00 - 12:30 Presentations of challenges and research issues by participants

Jeannette Wing, Vladimiro Sassone, Insup Lee, Jose Fiadeiro,
Oscar Nierstrasz, Ira Baxter, Simon Dobson

14:00 - 15:00 Presentations of challenges and research issues by participants

Rance Cleaveland, Stefan Jähnichen, Stephan Merz,
Joseph Sifakis (by MW), Kevin Sullivan

15:00 - 15:30 Identification of challenges and research topics

16:00 - 18:00 Discussion of topics in working groups

34

Agenda

Sunday, May 23
8:30 - 9:30 Presentations of challenges and research issues by participants:

Jeff Kramer;

Presentation and discussion of first results of the working groups

9:30 - 10:30 Discussion of topics in working groups

11:00 - 12:30 Discussion of topics in working groups

14:00 - 16:00 Presentations of results of working groups and final discussion

35

1

Challenges in Software
Intensive Systems Research

Don Batory
Department of Computer Sciences

University of Texas at Austin

2

This Talk...

• 20 years of observations (mostly by others)

• Central technical problems of software
intensive systems

• Central barriers to progress

36

3

Hard Technical Problems
• As a community, we don’t understand:

• the mathematics of large scale software design
or know if mathematics are needed...

• how to go from declarative specifications of systems automatically
to their optimized source

• how to scale proofs of correctness to large systems

• role of multiple languages in large scale system design

• how architectural recovery can be supported in an automated way

• But individually, members of our community do...

• Technical problems are known, but not main challenge

4

Have You Noticed...
• Child prodigies are in:

• art, chess, mathematics, music, golf

• But not in:
• surgery, politics, engineering, software engineering (SE)

• Why?
• complexity assimilated through experience, time

• Success in SE (if any) will be in the long haul
• SE is driven by fads
• ideas that last must survive the test of time

37

5

Paraphrasing Our Discipline

• M. Graham: hard thing about SE is that
you can’t ignore anything

• Dijkstra: need supreme competence in
many areas

• We need best and brightest, but future
relies on student sacrifice

6

Paraphrasing Our Discipline
• Good career move?

• competencies that are needed are not generally appreciated
• Ph.D. in software design?? program algebras?? program transforms??
• reward system is not in place

• SE or software-intensive systems is fundamental
• not sexy

• Most significant advances in SE must be hidden

“Don’t tell them how or why it works;
it will just scare them...”

• Best and brightest have far easier career paths from which
to choose

38

7

What to Do?

• Solvay Conferences – premier
conferences in physics in early 1900s

• foundations for quantum mechanics, relativity

• Meetings of excellence
• by invitation on per area basis
• akin to Dagstuhl paradigm, but on scale
• best and brightest focused on key problems
• advertise for students, funding

8

Solvay Conferences
• Progress requires close coordination theory and practice

• will take years
• time is not on our side

• Importance critical
• funding is vanishing
• panama canal, time

• Funding contradiction
• if short term, people may incorrectly assume certain ideas failed

(where they have not)
• may direct focus elsewhere...

• Technical problems are solvable, in time
• Non-technical problems are greatest barrier to progress

39

1© 2004, Semantic Designs, Inc. NSFEU’2004

Engineering Software Intensive Systems
using

Design Maintenance Systems
Putting Design permanently into the Process

Ira D. Baxter

2© 2004, Semantic Designs, Inc. NSFEU’2004

What's the Question?
• We can already build very complex software systems

– Telephone switches, Windows OS, Insurance software
• Bad: Simple models of engineering (e.g., waterfall)

– Unable to get anything right and move on!
• Requirements, specification, design, performance

• Worse: Can't maintain it well once delivered
– No decent institutional memory of artifact structure/rationale
– Cost of software primarily occurs after delivery
– Software lifetimes are growing!

• Question: How to capture and harness design
to enhance development/maintenance process?

40

3© 2004, Semantic Designs, Inc. NSFEU’2004

State of the Art

• Terminology isn't defined clearly in SE field
– What's a design? What's an architecture? When to use which?
– Hard to make progress without definitions

• Weak "design" tools (UML, StateCharts, …)
– focus designer's attention on some technological principal specification
– focus on software technology rather than domain knowledge

• Continuing demand for "Reverse Engineering"
– Attempt to recover information from an existing artifact

• Vast literature on formal specification and refinement
– Practically nothing available to harness it

• Considerable work done in AI field on "design"
– Connecting specifications to implementations
– Tracking alternative results (non-monotonic backtracking)
– Ignored almost completely by SE field

4© 2004, Semantic Designs, Inc. NSFEU’2004

A Radical Approach
• Make Design be the engineering product

– So that artifact implementation is trivially extracted
• Engineers never allowed to code directly

– So that what/how/why questions easily answered
• Capture "what" knowledge in domain-specific forms
• Capture "how" knowledge tying domain concepts to technology implementations

• Define desired artifact changes as formal spec deltas
– "Integrate" deltas to produce complete design
– Merges "implementation" and "maintenance" phases

• Provide mechanical, scalable support over designs:
– To navigate

• Support analysis of existing structure
• Propose alternative implementation choices

– To incrementally update using spec deltas
– To implement most trivial tasks
– To handle long-term transactions of multiple engineers

41

5© 2004, Semantic Designs, Inc. NSFEU’2004

How to deliver SE technology
• Organize knowledge around "problem" domains

– Use to specify functionality/performance in notation of problem expert
– Index to "how-to" knowledge:

• analyzers, refinements, implementation tactics
– Abstraction levels: specification, technology, implementation

• Use Program Transformation to implement knowledge
– Optimizations and Refinements

• Inference as rewrites; Classic compiler technology as special case
– Mixed-initiative implementation: tacticals + interactive guidance

• Mixed-initiative analysis of result performance
• Capture transform sequence + rationale as Design

– Rationale = proof that performance achieved by transform choice
– Design-updates as transactions
– Incremental updates using

• distributive laws on specs, commutative laws on implementations
• additive domain knowledge

6© 2004, Semantic Designs, Inc. NSFEU’2004

The Design Maintenance System vision
• Transformational Designs

• Functionality Spec (f0) + Performance Spec (Grest)
+ Derivation + Justification + Alternatives

• Scale
• Metaprogram driven automation
• Incremental Updates

• Specification & Technology ∆s
• ∆s drive design revision:

retain transforms that commute with delta
• Domain-based specification/implementation

• Simplify expression of problem
• Store implementation knowledge with domain

• PARLANSE: Parallel foundation of DMS

Or

And

And

Seq

Seq

Seq

And

And

Apply
C1

Apply
C2

Apply
C3

Apply
C4

Apply
C5

Apply
C6

Apply
C7

Or

O(n log n)

C++

D

e

r

i

v

a

t

i

o

n

H

i

s

t

o

r

y

O(n log n)
/\ C++

∆@p(Ci @q(fi))=
Ci @q’(∆’@p’(fi))

Ci@q

∆@p

Ci@q’

∆’@p’
fi+1'

G4

G3

G1

Grest

G2

G9

G6

G7

G5

f 0

f 1

f 2

f 3

f 4

f 5

f 6

f G

fi fi'

fi+1

∆

ICSE 2004: DMS: Program Transformations for Practical Scalable Software Evolution

42

22-23 May 2004 EU-NSF Workshop on Engineering
Software Intensive Systems

Engineering Challenges for
Software Intensive Systems

Rance Cleaveland
Dept. of Computer Science

SUNY at Stony Brook
-and-

Reactive Systems, Inc.

2

What Have I Been Doing for the Past
15 Years?

1989—????: Prof. of Computer Science

Process algebra
Semantics
Model-checking tools

2001—????: CEO of Reactive Systems

V&V tools for Simulink and Stateflow
Semantics of Simulink and Stateflow
Testing
More testing

43

3

State of the Art for SIS
What the professors might say

Model checking
Formal specification
Middleware
Software architecture

What the industrialists might say

Model-based development
“Autocoding” (generating code from models)
FlexRay / Time-triggered protocol
Software architecture

4

Which Industrialists?
Embedded system developers in
automotive, aerospace, defense, etc.

Characteristics

Backgrounds are in non-CS engineering
CS info from consultants, trade magazines
“We are not in the software industry”

44

5

Where Work Is Needed
Better design processes (Where are “blueprints”?
“Circuit diagrams”? “Simulation models”?)
Standardized (mathematical!) design notations
More nuanced V&V
Better tech transfer

Remember:
Engineers are not afraid of math.
They are afraid of wasting time.
They are wary of computer scientists.

6

“More Nuanced V&V?”
Currently, SIS builders can:

Test (little support from CS community)
Formally verify (impractical)

We need V&V strategies that fall in between
these extremes

Less thorough but still rigorous
Theorems characterizing “gaps”
Requirements as test oracles

Goal: the longer you validate the more
confidence you should have

45

7

Integrating Foundational Influences
Tools! cf.

Electronic Design Automation in the 1980s
Control Design Automation in the 1990s

Tools must have sound mathematical
foundation to be accepted and used.

Mathematics must have foundation in
intuition to be accepted and used.

8

Mathematical Intuitions?
State machines
Sequence diagrams
Architecture
Interfaces (external and internal)

All the above are already used.
With right mathematics, tools will follow.

Note: structure, operational content

46

9

Conclusion
Big gap between research and practice
More attention needed to improved
software design
Mismatch in expectations about V&V

CS researchers: get systems “right”
System builders: get systems “right enough”

Mathematics of structure, operation
essential

47

Simon Dobson

Distributed Systems Group
Department of Computer Science
Trinity College, Dublin IE

simon.dobson@cs.tcd.ie

University of Dublin
Trinity College

Dublin 2, Ireland

Copyright © 2004, Simon Dobson <simon.dobson@cs.tcd.ie>

Software’s reflection:
Software-intensive challenges

from ambient computing

EU/NSF joint workshop on Engineering Software-
Intensive Systems, Edinburgh, May 2004

Software’s reflection 2

Overview

Ambient systems
• Also called ubiquitous computing, pervasive computing, context-

aware computing, …

Software systems sitting in an unusually close
relationship to real-world process and actions

• Provide IT support that responds directly to location, co-location,
process, history, interest, expertise, … , of users

• Add information and/or services to everyday artefacts

Major international research and commercial topic
• Europe: GLOSS, Ambiente, E-Gadgets, Tacit, …
• US: MIT Aura and Oxygen, UC Berkeley “motes”, GA-Tech, …
• Industry: HP Cooltown, Microsoft Easy Living, IBM, Intel, …

48

Software’s reflection 3

The environment

Potentially every action has both physical and
informational significance

• Blurs the traditional distinction between atoms and bits
• All events are potentially mediated by, or significant to, software
• Achieve coherence between both worlds

An ambient system “sees its own reflection” more
strongly than most

Physical action Informational effect

Physical effect

Environment Application

Decision

Informational effect

Decision

One can encounter “inter-process
communication” via the environment,
intentionally or otherwise

Software’s reflection 4

Stability

Information in ambient systems is inherently noisy,
and is manipulated with inherently uncertain methods

• Can’t be removed by further analysis

React to “significant” events – and only those events
• The infamous “flickering light” problem…
• The slightly less famous “dude, where’s my printout?” problem…

Stability both singly and under composition
• Adding information and/or resources should not move behaviour

unexpectedly

How do we engineer systems that are stable under minor
perturbations and will react to events without being swamped

by noise?

49

Software’s reflection 5

Not exceptional

Any “fact” may be wrong; any decision may need to be
un-done

• Can’t open the door half-way if we’re only half-sure who’s there…

In practice we must design under an assumption of
incorrectness (or at least of uncertainty)

Build this uncertainty more into the fabric of systems
• Languages with no boolean type?

What are the correct conceptual and software structures for
dealing with inherent uncertainty and incorrectness, where

failure is completely un-exceptional?

Software’s reflection 6

A richness of models

The information available to ambient systems is
extremely rich and inter-connected

• Can often draw inferences as much from a constellation of “facts”
as from the “facts” themselves

Constrained by real-world physics and policies
• Spotting the impossible, non-standard logics
• Move further away from the Von Neumann view?

Many traditional issues assume new importance and
subtlety – privacy and security most especially

What are the appropriate logics and approaches for specifying
and dealing with richly-connected and subtly interdependent

contextual information?

50

Software’s reflection 7

Re-opening semantics

Ambient systems are almost always mobile to some
degree

• Meet pieces of functionality as they go along…
• …use dynamically-located resources…
• …but still do something sensible and recognisable

Closely related to stability and richness – in fact, this
is probably the unifying “grand challenge”

• Behavioural envelopes within which the system can adapt
• Continuity and compositionality of behaviour
• Denotations are open, but may still have properties to analyse

What does a program denote when it meets part of itself as it
goes along?

51

Joint EU/NSF Strategic Research Workshop on

Engineering Software Intensive Systems

José Luiz Fiadeiro

EU/NSF Workshop on Engineering Software-Intensive Systems

2A case of “complexity”

elementary
control flow

symbolic
information

result-driven

mnemonics

in-the-head

“One man and his problem…”
(and his program, and his machine)

The Science of Algorithms and
Complexity

not so much Engineering but more of
Craftsmanship (one of a kind)

a case for virtuosi

52

EU/NSF Workshop on Engineering Software-Intensive Systems

3A case of “complexity”

execute once
termination

elementary
control flow

data structures
and types

symbolic
information

algorithmsresult-driven

I/O specsmnemonics

in-the-smallin-the-head

The need for
commercialisation…
“One man and his problem…”
(and his program, but their
machine)
The Science of Program
Analysis and Construction
Commerce, but not yet
Engineering

EU/NSF Workshop on Engineering Software-Intensive Systems

410 years ago, the “software crisis”

53

EU/NSF Workshop on Engineering Software-Intensive Systems

510 years ago, the “software crisis”

The challenge of complexity is not only large but also growing. […].

To keep up with such demand, programmers will have to change the

way that they work. "You can't build skyscrapers using carpenters,"

Curtis quips.

[…] Musket makers did not get more productive until Eli Whitney

figured out how to manufacture interchangeable parts that could be

assembled by any skilled workman. In like manner, software parts can,

if properly standardized, be reused at many different scales.

[…]In April, NIST announced that it was creating an Advanced

Technology Program to help engender a market for component-based

software.

EU/NSF Workshop on Engineering Software-Intensive Systems

6A case of “complexity”

continuous
execution

execute once
termination

elementary
control flow

databases,
persistence

data structures
and types

symbolic
information

system modulesalgorithmsresult-driven

complex specsI/O specsmnemonics

in-the-largein-the-smallin-the-head

“One man and
his problem…”
(but their
programs)
The Science
of Software
Specification
and Design
Engineering

54

EU/NSF Workshop on Engineering Software-Intensive Systems

7The case for objects/components

Builds on a powerful
methodological metaphor
– clientship

Inheritance hierarchies
for reuse

Software construction
becomes like child’s play

EU/NSF Workshop on Engineering Software-Intensive Systems

8The case for new mathematics

Algebraic techniques for structuring specifications
“Putting Theories together to Make Specifications”

The theory of Institutions

The role of Category Theory

55

EU/NSF Workshop on Engineering Software-Intensive Systems

9Yet, in 2003 the crisis was going on

Computing has certainly got faster, smarter and cheaper,
but it has also become much more complex.

Ever since the orderly days of the mainframe, which
allowed tight control of IT, computer systems have become
ever more distributed, more heterogeneous and harder to
manage. […]

In the late 1990s, the internet and the emergence of e-
commerce “broke IT’s back”. Integrating incompatible
systems, in particular, has become a big headache. A
measure of this increasing complexity is the rapid growth
in the IT services industry. […]

EU/NSF Workshop on Engineering Software-Intensive Systems

10and the “silver bullet” became…

Computing is becoming a utility and software a service.

This will profoundly change the economics of the IT

industry. […]

For software truly to become a service, something else has

to happen: there has to be a wide deployment of web

services. […]

applications will no longer be a big chunk of software that

runs on a computer but a combination of web services

The Economist, May 10, 2003

56

EU/NSF Workshop on Engineering Software-Intensive Systems

11Web services are…

“self-contained, modular applications that can be

described, published, located, and invoked over a network,
generally the Web”

Web Services architecture overview

– the next stage of evolution for e-business

IBM www-developerswork

“Sexed-up” components?

EU/NSF Workshop on Engineering Software-Intensive Systems

12Yet a case of “complexity”?

continuous
execution

execute once
termination

elementary
control flow

databases,
persistence

data structures
and types

symbolic
information

system modulesalgorithmsresult-driven

complex specsI/O specsmnemonics

in-the-largein-the-smallin-the-head

“One man and
his problem…”
(but their
programs)
The Science
of Software
Specification
and Design
Engineering

“One man and
his problem…”
(but their
programs)
“One man and
everybody’s
problems…”

57

EU/NSF Workshop on Engineering Software-Intensive Systems

13A case of “complexity”

distribution &
coordination

separation data
computation

sub-systems &
interactions

evolving

in-the-world

continuous
execution

execute once
termination

elementary
control flow

databases,
persistence

data structures
and types

symbolic
information

system modulesalgorithmsresult-driven

complex specsI/O specsmnemonics

in-the-largein-the-smallin-the-head

EU/NSF Workshop on Engineering Software-Intensive Systems

14Same complexity?

“Physiological” complexity
derives from the need to account for problems/situations that
are “complicated” in the sense that they offer great difficulty
in understanding, solving, or explaining
there is nothing necessarily wrong or faulty in them; they are
just the unavoidable result of a necessary combination of parts
or factors

“Social” complexity
derives from the number and “open” nature of interactions
that involve “autonomic” parts of a system;
it is almost impossible to predict what properties can emerge
and how they will evolve as a result of the interactions in place
or the dynamics of the population itself.

58

EU/NSF Workshop on Engineering Software-Intensive Systems

15Same Science & Engineering?

“Physiological” complexity
server-to-server, static, linear
interaction based on identities
compile or design time integration
contracts of usage

“Social” complexity
dynamic, mobile and unpredictable
interactions based on properties
“late” or “just-in-time” integration
heterogeneity of components
quality and trust

EU/NSF Workshop on Engineering Software-Intensive Systems

16Challenges

Shift the focus to interactions among autonomous entities

Programmable

Interfering

“Context-aware”

Evolvable

Lift them to the requirements level

Policies that control evolution and self-organisation

Decouple them from specific platforms

Develop dynamic binding mechanisms

59

ESISESIS--May 2004May 2004 11

Dynamic software Dynamic software
federationsfederations

CarloCarlo GhezziGhezzi
Dipartimento di ElettronicaDipartimento di Elettronica ee
InformazioneInformazione
Politecnico di MilanoPolitecnico di Milano
carlocarlo..ghezzighezzi@@polimipolimi.it.it

ESISESIS--May 2004May 2004 22

The old worldThe old world

ProductProduct
monolithic monolithic
centralizedcentralized
static, closedstatic, closed

ProcessProcess
single authoritysingle authority
prepre--plannedplanned
monolithicmonolithic

60

ESISESIS--May 2004May 2004 33

AchievementsAchievements
ProductProduct

monolithic monolithic
centralizedcentralized
static, closedstatic, closed

ProcessProcess
single authoritysingle authority
prepre--plannedplanned
monolithicmonolithic

modular modular
distributeddistributed
controlled dynamic bindingcontrolled dynamic binding

static task decompositionstatic task decomposition
prepre--planned evolutionplanned evolution
spiralspiral

ESISESIS--May 2004May 2004 44

Challenges (product, Challenges (product,
process)process)

Systems built by federating Systems built by federating
dynamically discovered componentsdynamically discovered components

Open world, mobilityOpen world, mobility
The The ““network as a bazaarnetwork as a bazaar”” metaphor metaphor

Different types of resources, different Different types of resources, different QoSQoS

SelfSelf--organizing organizing vs vs prepre--planned planned
systemssystems

61

ESISESIS--May 2004May 2004 55

Challenges (product, Challenges (product,
process)process)

No centralized control over available No centralized control over available
resources and system developmentresources and system development
Resources may be transient Resources may be transient
Mobile users/developersMobile users/developers
Ad hoc scenarios Ad hoc scenarios
New kinds of business and process New kinds of business and process
modelsmodels

ESISESIS--May 2004May 2004 66

Problem scaleProblem scale

From inFrom in--thethe--tinytiny
sensor networkssensor networks

huge numbers of autonomous cooperating huge numbers of autonomous cooperating
devicesdevices

To inTo in--thethe--largelarge
web servicesweb services

62

ESISESIS--May 2004May 2004 77

Towards a research Towards a research
agendaagenda

Support fully decentralized (peer-to-peer) software
architectures even in fully dynamic ad-hoc
scenarios where nodes are mobile
Identify flexible binding mechanisms to support
dynamic and self-organizing component
federations, via service discovery, brokering and
negotiation, etc.
Specify, verify, negotiate, and monitor quality of
services
Specify and support the notion of context-
awareness to develop context-aware services

dy
na
m
ica
lly

ESISESIS--May 2004May 2004 88

Towards a research Towards a research
agendaagenda

Support distributed workgroups contributing
to the virtual marketplace of services;
Understand software business models in
highly decentralized marketplaces
supporting federated processes

63

ESISESIS--May 2004May 2004 99

ConclusionsConclusions

We We are are moving towards unprecedented moving towards unprecedented
degrees degrees of of flexibilityflexibility, , dynamicitydynamicity, and , and
decentralization decentralization at at all levelsall levels
New New challenges to correctnesschallenges to correctness/ /
reliabilityreliability, , securitysecurity, performance, performance
Crucial to understand how we Crucial to understand how we can can build build
on on previous approaches previous approaches and and where where new new
ones ones are are neededneeded

64

CONSTANCE HEITMEYER
NAVAL RESEARCH LABORATORY

WASHINGTON, DC 20375

MAY 2004

ENGINEERING
SOFTWARE-INTENSIVE SYSTEMS:

RESEARCH ISSUES AND
CHALLENGES

212/7/2004

A VISION OF FUTURE
SOFTWARE DEVELOPMENT

Produce a
high-quality
spec of the
required
system/
software
behavior

Generate
efficient,
provably
correct

executable
code

CONVENTIONAL
SOFTWARE DEVELOPMENT

SOFT WARE
REQUIREMENTS
SPECIFICATION

REQUIREMENTS

TEST
PLAN

manual

manual

manual

manual

check manually

TEST
CASES

CODE

DESIGN

Usually
prose

SIMULATOR

SPEC EDITOR

CONSISTENCY
CHECKER

VERIFICATION
TOOLS

TABULAR SCR
REQUIREMENTS

SPECS

SOURCESOURCE
CODECODE

SYNTHESIZERSYNTHESIZER

TESTTEST
CASECASE

GENERATORGENERATOR
TEST
CASES

manual

automatic

automatic

FUTURE
SOFTWARE DEVELOPMENT

manual

check is
automatic

SOURCE
CODE

automated
analysis

manual

Develop
algorithms

interactive

65

312/7/2004

WHAT IS THE BIGGEST CHALLENGE
FOR SOFTWARE ENGINEERING?

• The greatest challenge is NOT software design
• Rather, it is capturing the software requirements

– A good software requirements spec describes the set of all
acceptable implementations

• It excludes no acceptable implementations
• It includes no unacceptable implementations

– Fred Brooks refers to the software requirements as the essence, i.e.,
the required externally visible behavior of the system or software
component

• Wide agreement on the criticality of correct requirements
– Yet, well-founded technology supporting the construction of correct

requirements is lacking
• Requirements acquisition remains a very hard problem

– New methods and techniques for capturing and documenting system
and software requirements are urgently needed

– While scenarios can be effective in eliciting requirements, we need
new approaches to representing scenarios

• Message sequence charts are insufficient

412/7/2004

• New spec languages for capturing the system/software requirements
– These languages should produce declarative specs that

• Are readable
• Limit implementation bias
• Scale to large systems
• Are decomposable into parts

– Methods and techniques for constructing good specs
– Criteria for evaluating specs

• Models for refining and debugging the spec
– Some useful models

• Formal analysis models
• Simulation/animation models
• Environmental models
• Special-purpose models, e.g., security models

– Methods and techniques for constructing good models
– Criteria for evaluating models

• Usable tools for debugging the specs and reasoning about their
properties

• Compilers for transforming a specification into provably correct,
efficient, executable code

• Techniques for extracting requirements specs from legacy code

MORE CHALLENGES

66

512/7/2004

• Need domain-specific languages, methods, and techniques
– Example domains: avionics, automotive, medical devices, spacecraft
– Our experience is with NASA’s safety-critical systems and mission-critical

military systems (e.g., a security-critical, software-based crypto device)
• Need to integrate tools to work together

– Tools include “pragmatic” ones, such as those that do symbolic execution
and animation, as well as tools for formal verification

– Our experience: Different tools detect different classes of errors
• Need techniques to manage the complexity inherent in specifying,

validating, verifying, and certifying large software systems
– Abstraction
– Decomposition and Composability

• Need techniques for composing hetergeneous components to form a
software system that satisfies its specification
– Code synthesized from specs
– COTS
– Legacy code
– Code implementing an abstract data type
– Manually-constructed code

• Need integrated approach to testing and verification

EVEN MORE CHALLENGES

67

Challenges for Software Intensive Systems
ITEA Technology Roadmap

Prof. Dr. Stefan Jähnichen

∑ 2023!

2

Norbert Pieth

Basic features of software intensive systems

In years to come, software-intensive systems will incorporate four basic features:

- they will be dynamic evolutionary systems,

- they will exhibit adaptive and anticipatory behaviour,

- they will process knowledge and not only data,

- they will allow the user to stay in control

68

3

Norbert Pieth

Key drivers

There are two kinds of keys to the development and
deployment of these systems:

- Key drivers for acceptance are
- interoperability of products, systems and applications
- the “-ilities”: usability, testability, reliability … but also

security and safety

- Key issues for implementation are:
- mostly technical: mastering size, complexity and

adaptiveness
- mostly economic: middleware business models and

costs.

4

Norbert Pieth

Roadmap to convergence of software intensive systems

Source: ITEA‘s Technolopgy Roadmap for
Software-Intensive Systems

∑!

69

5

Norbert Pieth

Application domains

- Home entertainment (Personalized information services)

- Virtual companies and virtual business networks (Network
and application management)

- Mobile and personalized Information services (Seamlessly
location based and shared services)

- Web services for combination of private and business
application (Intermediation and broker services)

6

Norbert Pieth

Challenges for software intensive systems / System engineering

- Embedded software systems
(re)configuration, functional upgrade, maintenance,
replacement at runtime, integration of technologies

- Evolutionary system
permutative and adaptive system design

- Software family architectures
Model driven architecture, product line engineering for
software component reuse, generative programming
paradigms

- Knowledge based software engineering
Automation in verification and validation of software
requirements using formal descriptions, automatic
model checking, advanced testing strategies

70

7

Norbert Pieth

Challenges for software intensive systems / Software engineering

- Component markets and software suppliers
- Localisation and modularisation of software

components, agent based separation of
concerns, Variability Engineering

- Reuse of engineering elements for software life
cycle extension

- distributed code libraries, design patterns,
model based software development

- Flexible middleware systems for network
applications

- autonomous services and devices, distributed
communication and computation schemas,
network self-configuration and management

8

Norbert Pieth

Challenges for software intensive systems / Software engineering

- Domain specific description languages
- high-level specifications, feature models, UML

unifying the development for many target
platforms

- Self-organising software agents
- Intelligent problem separation and solving

techniques, dynamically reconfigurable services,
system composition on the fly, adaptive software
components

71

9

Norbert Pieth

Challenges for software intensive systems / Engineering process
support

- Standardisation, Integration and interoperation
of engineering tools

- standardises data and metadata exchange
formats

- Distributed and collaborative engineering
- Communication and collaboration

platforms, WIKI-systems, social software
initiative

- Knowledge based process management
- Experience and best practice

management, knowledge transfer, context
aware decision support, software mining,
model mapping, Ontologies

10

Norbert Pieth

Mit uns können Sie rechnen!

72

Joint EU/NSF Strategic Research Workshop
1

©Kramer

Engineering Software
Intensive Systems

“Three half-baked proposals for
software development, software
organisation and an application”

Jeff Kramer

Imperial College, London.

Joint EU/NSF Strategic Research Workshop
2

©Kramer

S/W Development: system models and analysis

Models provide sound basis for design and analysis.
- Check properties of a proposed software design:

• Behaviour, Performance, Reliability …
- Provide feedback though counterexamples, animation,
scenario replay, test generation, simulation…

Model building (or synthesis) and analysis is difficult and has
yet to make a significant impact on practice.

How can we facilitate the process of model
construction ? …from requirements? ..for designs?
What forms of analysis are amenable to tool support
and practical application? …domain specific modelling?

73

Joint EU/NSF Strategic Research Workshop
3

©Kramer

Organisation: self-organising software systems

Most systems are required to be capable of evolution, many
being required to evolve dynamically as new components are
introduced and as existing components are removed or fail.
The objective is to minimise the degree of explicit
management necessary for construction and subsequent
evolution whilst preserving the required properties and
operational constraints of the system.

How can we provide a sound approach to self-manage
such change, especially where it is required to take
place in an executing, deployed system?
cf. autonomic computing, self-healing, adaptive
computing, …

Joint EU/NSF Strategic Research Workshop
4

©Kramer

An application - pervasive computing

Mobile communicators which integrate voice, video and
processing capabilities with wireless communication are
likely to replace the current mobile phones. These will not
only be used for personal communications and internet
access, but will interact with intelligent sensors and
actuators embedded in our homes, offices, transportation
systems and even within or on the body to form a mobile
ubiquitous computing environment.

How should such systems be constructed, managed
and customized ?
What are the QOS, security and confidentiality
issues?

74

4/27/2004

Challenges in Engineering Software
Intensive Systems

Insup Lee
Department of Computer and Information Science

School of Engineering and Applied Sciences
University of Pennsylvania

May 22, 2004

4/27/2004

Embedded Systems

An embedded system is a system
that interacts with (or reacts to) its environment, and
whose correctness is subject to the physical constraints
imposed by the environment.

Difficulties
Increasing complexity
Decentralized and networked
Safety critical
Resource constrained

Non-functional: power, size, etc.

Development of “invisible” embedded software

75

4/27/2004

Model-based approach

Formal models from informal requirements
NLP to models
Restricted specifications

Model validation
Sharing of modeling artifacts

4/27/2004

CFR Memo

CFR
Model

Memo
Model

System
Model

Merging

NLPNLP
CFR and Memo documents are translated
into formal models. Currently, this is done manually
we are working on using natural language processing
(NLP) techniques to automate it.

The multiple models are merged into a single system
model, which can be analyzed using standard formal
methods techniques such as reachability analysis,
model checking.

Natural Language Documents
The portion of Hepatitis B testing regulations we examined

includes two documents:
Code of Federal Regulations 21CFR610.40
Guidance Memo

76

4/27/2004

Narrowing the gap between
specification and implementation

Problem:
Gap between an abstract model and the implementation
Scalability challenge (software size and complexity)
Validation and certification

Approaches
Test generation from specification
Model-based code generation
Run-time checking/verification
Etc.

4/27/2004

Model-based testing

Specification
Model

Test Output

Test Suite

Implementation

Test
Generation

Test
Execution

Test
Evaluator

input

output

77

4/27/2004

Run-time verification

Run-time monitoring and checking w.r.t. formal
specification
Ensures the runtime compliance of the current execution of a
system with its formal requirement

detect incorrect execution of applications
predict error and steer computation
collect statistics of actual execution

Complementary methodology to formal verification and
program testing
Prevention, avoidance, and detection & recovery

4/27/2004

Java-MaC

Program
(.class)

Monitoring Script
(Java-PEDL)

Requirements
(MEDL)

Steering Script
(Java-SADL)

Event
Recognizer Checker

Java-PEDL
Compiler

MEDL
Compiler

Java-SADL
Compiler

Program Filter

Filter
Generator

Injector
.class

Instr.
Info

Instr.
Info

Compiled
Java-PEDL

Compiled
MEDL

78

4/27/2004

Compositionality

Composition is necessary for large complex systems
Composition of homogeneous models

Concurrent processes
Scheduling components (hierarchical schedulers)
Resource models

Composition of heterogeneous models
Composition of models with different purposes (e.g.,
physical layout of sensor networks, model for nodes
movement, communication protocols)

4/27/2004

Compositional Real-Time Guarantees

Real-Time Composition
Combine multiple real-time requirements into a single
real-time requirement guaranteeing schedulability

Example: periodic task model T(p,e)

Real-Time
Constraint

Real-Time
Constraint

Real-Time
Constraint

EDF/RM

T1 (3, 1) T2 (4, 1) T (?, ?)

79

4/27/2004

Certification based on models

Conformance to models
Static, dynamic
Incremental

Metrics, insurable software

80

Models and Components

Stephan Merz

MOSEL project

INRIA Lorraine & LORIA, Nancy

Research background

Formal development methods

B, TLA+, action systems

systems on chip, protocols, information security

Verification technology

theorem proving

model checking

combination via predicate abstraction

Edinburgh, 05/2004 – p.1/3

81

State of the Art

System development

components, reusability, aspects

focus on architecture

rich modeling languages

Formal development methods

closed systems, (re)start from scratch

mostly “flat” models

focus on specific classes of systems

Edinburgh, 05/2004 – p.2/3

Challenges

Development of reliable components

model-driven development process

disappearing formal methods

system integration, test, and maintenance

Wide-spectrum notations and tools

common semantic basis: event systems

application-specific profiles

back-ends: verification, performance, code generation, . . .

Edinburgh, 05/2004 – p.3/3

82

Putting change at the center

of the software process

Oscar Nierstrasz

www.iam.unibe.ch/~scg

Software Composition Group

University of Bern

© O. Nierstrasz EU-NSF Workshop 2
83

© O. Nierstrasz EU-NSF Workshop 3

Plus ça change …

Real systems are characterized by

continuous change

• Law of continuing change

• Law of increasing complexity

• 50-75% of development effort is

“maintenance”

• 60% of “maintenance” is new functionality

• Modern methods lead to longer-lived

systems, hence more maintenance

© O. Nierstrasz EU-NSF Workshop 4

Status quo
Focus is still on short-term goals

Dangerous metaphors:

• Software “engineering”
Process stops when product is ready?

• Software “architecture”
Buildings are much harder to modify

• Software product line
“Mass customization” a better metaphor?

• Software “components”
Hardware breaks you don’t maintain it

• Software “maintenance”
“Maintenance” is really continuous development

84

© O. Nierstrasz EU-NSF Workshop 5

Research directions

Put change at the center of the software

process, programming languages and tools

© O. Nierstrasz EU-NSF Workshop 6

Methods

• Empirical research into “best practices”

to support change

• Reverse engineer the informal

processes

• Tie forward, reverse and re-engineering

• Meta-models for describing processes

85

© O. Nierstrasz EU-NSF Workshop 7

Tools

• Tools to model, analyse and transform

evolving software systems

• Support co-evolution of artifacts at

various levels of abstraction, from code,

through design to requirements

• Integrating tools that modify and store

code; tracking change

© O. Nierstrasz EU-NSF Workshop 8

Programming Language

• Bury file-based languages — languages

to describe living systems

• Mechanisms to support coexistence of

multiple running versions

• Mechanisms to support both fine and

coarse-grained evolution

• Express design concepts and design

evolution

86

1

Karl Reed icse.2004 esis

Some issues in the engineering of

widely deployed software intensive

systems-functional variation

Chair IEEE-Computer Society Tech. Council on Software Engineering

Governor, IEEE-Computer Society(1997-1999,2000-2002),

Director, Computer Sys. & Software Engineering Board, ACS,

Department of Computer Science & Computer Engineering, La Trobe

University

by Assoc. Prof. Karl Reed,FACS, FIE-Aust., MSc,ARMIT

2

Karl Reed icse.2004 esis

1. We have a system consisting of a collection of interacting (statically or

dynamically) bound components in which either a single component

or sub-system can be replaced with another…

2. If the functionality represented by the replaced “part” is changed,

• A/What mechanisms can be provided to allow this to be propagated to the

user level?

• B/ How shall we (or should we) control the functionality-variation at the

user level?

• (Normally I’d be arguing that we need systems stability, and that this is a

measure of quality???)

The Problem..

87

3

Karl Reed icse.2004 esis

Why are surprises important?Why are surprises important?

--Will customers pay for software intensive systems if they Will customers pay for software intensive systems if they

continue to be difficult to usecontinue to be difficult to use

If not, thereIf not, there’’ll be no research funding!!ll be no research funding!!

50%1

30%1.5

20%2.00

15%2.5

10%3.33

5%7.00

Productivity

Increase

Required

Normalised

Time to

Breakeven-No.

learning times

c

4

Karl Reed icse.2004 esis

1. Dynamically “varying” systems of (autonomous) dynamically linked components can lead

to variant functional of non-functional behavioural variation.

2. If functional variation is allowed, the ability to somehow control it, and determine what is

both acceptable and allowable is needed

3. In terms of what is acceptable, we can make use of a number of properties of real

systems (Shaw 1999) where the internal states/transitions are quite “fuzzy”, and where a

user actually accepts a range of outcomes (hence, varying functionality). In fact, humans

may not work with precise systems often.

-Also, humans work with large systems whose apparent ambiguity (Reed, 2000) can

appear as functional variation

4. What is allowable .. An (functional) operational envelope could be defined in principal.

Functionality out-side this envelope could be rejected- BUT RECORDED, AND

PRESENTED TO THE USER, WHO COULD ADD IT TO THEIR OPERATIONAL

ENVELOPE (or a systems administrator could)

5. Pt.4. Constitutes a “controlled mutant adoption” process.

6. Pt.3. May involve a kind of reverse HCI,or a human-centred fault tolerant approach.

Agenda

88

5

Karl Reed icse.2004 esis

“F1. Current software has too many surprises. The sources of surprise

are poorly understood.”

Sources of surprises... Real and apparent ambiguity in the means of representation of

systems, e.i. Languages (cf 3 pages of c++ with 3 pages of government regulations)

Real and apparent unpredictability in behaviour...

“Teenagers have less trouble with PC software because they are adept at playing

computer games” Charles Wright, editor Melbourne Age “green pages” computer section

2000

“Building ‘bots’ that play computer games with near human competence is not that hard” US

researcher in AI….

LARGE-SCALE (UBIQUITOUS) SOFTWARE SYSTEMS CANNOT HAVE TO MANY

‘SURPRISES’

F2. Key sources of software surprise include immature or poorly integrated software

domain sciences, construction (product) principles, and engineering processes.

Surprise(we already deal with functional variation)….!!! (nsf

report on s/w research 1998)

6

Karl Reed icse.2004 esis

what are they?

-A “surprise” (for our purposes) is some behaviour of a system’s which causes or

could cause a user to make an error1, or excessive stress and discomfort in

resolving the behaviour

-Occur inherently in Lehmann’s E-type systems

-Occur WHEN developers BELIEVE they are building E-type systems

Examples..introduction of new expense claim s/w suddenly impacts the work-

loads, stress and financial security of 100’s of people

…no logical relationship between functions in s/w and semantics of menus they

are in

..almost un-usable web-sites

..SCS system failures are better known

-INCLUDE some un-expected functionality (that requires some effort to interpret?)

WHAT ARE SURPRISES --- WHO KNOWSABOUT THEM AND WHAT CAN

WE DO ABOUT THEM?

89

7

Karl Reed icse.2004 esis

Who knows about them?

-The SCS community places great effort on identifying “unexpected behaviours”and
controlling their impact.

-Those working on systems with adaptive behaviour and user-error recovery.

-Fault-tolerant community (already been mentioned)

-Games technologists (one of the Fraunhofer Institut’s has looked at this)

-Extreme Programmers and iterative developers “think” they are dealing with “surprises”

-Product-line strategists

-lateral thinkers (here, the “surprise” is an unrecognised “use” which allows functional
substitution

What can we do about them?

-Elevate their definition and management to a high-level design feature rather than an
implementation problem to be avoided

-Those working on systems with adaptive behaviour and user-error recovery.

-Study the behaviour of people working in/with systems whose behaviour changes

-at the design level- deal with the adoption and control of autonomous functional variation

WHAT ARE SURPRISES --- WHO KNOWSABOUT THEM AND WHAT CAN

WE DO ABOUT THEM?

8

Karl Reed icse.2004 esis

Where functionality has been removed..

-Maybe analogous to a fault-tolerant situation (however, the system could actively seek a
replacement component)

-User may agree that they can manage without this (operational envelope).

-User may seek-out a replacement function--rejecting the original

-Fault-tolerant community (already been mentioned)

-Games technologists (one of the Fraunhofer Institut’s has looked at this)

-”Grace-full degradation” of OS in the 70’s..

Where functionality has been changed

-Need to define “conformant” and “non-conformant” changes, e.g., a data representational
change

-Need to recognise unacceptable (I.e. unadoptable at the system level) change (op-
envelope issue)

-Can we define functionality extractors-correctors? (recognise and correct a functional miss-
match?- a re-use - “glue-code” problem?)

adoption of autonomous functional variation of due to some
type of component “change”

90

9

Karl Reed icse.2004 esis

Formal approaches….

-Component-contract specifications specify..

1. What semantic variation in service-component that can be tolerated

2. Semantic definition of service’s actual functionality

-Semantic reasoning about aggregated functionality, propagating the changes upwards until
either they reaches the user, OR violate some semantic constraint.

Informal Approaches.. (may be an operational approach?)

-Examine examples of functional variation visible to users,

-Using these, develop rules for specifying functional variations at the component level, and
for their transmission upwards (an operational approach to the formal)

Suggest there is actually a lot of data and examples to examine..

e.g. behaviour of pc-desk top s/w applications present to the user as having
unpredictable changes in functionality

relationship between knowledge, experience,skill and tools is relevant

Dealing with changing function..

10

Karl Reed icse.2004 esis

Assumes mechanisms for adopting functional variation and propagating it through a design

An (functional) operational envelope could be defined in principal. Functionality out-side this
envelope could be rejected- BUT RECORDED, AND PRESENTED TO THE USER, WHO
COULD ADD IT TO THEIR OPERATIONAL ENVELOPE (or a systems administrator could)

Constitutes a “controlled mutant adoption” process.

May involve a kind of reverse HCI,or a human-centred fault tolerant approach.

Use approaches from security (although of conceptual value only)--perhaps consider form of

intrusion (e.g. audit trail monitoring)

Adaptive user profile generation could be part of this

Needs..

mechanisms for describing the added functionality to users and administrators

roll-back mechanisms

Operational Envelope approach…

91

11

Karl Reed icse.2004 esis

1. Study the way humans work with large systems with apparent ambiguity

2. Develop the operational envelope approach..

• Develop a “controlled mutant adoption” process.

Research Agenda (one component)

92

Context-Aware Software-Intensive Systems
An autonomic approach

Vladimiro Sassone

University of Sussex, UK

Engineering Software-Intensive Systems (22.05.04)

V. Sassone Software-Intensive Sys

A Forthcoming Computing Paradigm

Ubiquitous Computing: migrating software executing on
networks owned and operated by others.
Countless ‘pervasive’ devices equipped with limited
resources and computing power will support end-to-end
applications which far exceed their own capabilities.

Challenges

Scalability, Variability, Context-Awareness

System Complexity is rocketing beyond our ability to design,
comprehend and control. It approaches that of biosystems
(e.g. economic systems).

We do: Understand the behaviour of components in
isolation.
We don’t: Understand the global behaviour of interacting
components.

Not likely to change soon: Need to “design for autonomy.”

V. Sassone Software-Intensive Sys

93

Autonomous Systems

exhibit context-dependent behaviour to fulfill specific
goals, possibly in complete isolation, and based on
previously gathered information.

Examples

Complex biosystems
Beagle2 probe on Mars
Wireless ad-hoc networks
Electronic controlled transport systems
Health monitoring systems
. . .

characterised by a degree of independence in making
decisions and adapting to unforeseen environmental
conditions. Often entail collaborative or competing
aspects, self-organisation, emergent behaviour.

V. Sassone Software-Intensive Sys

Autonomy as a Design Principle

Need to design systems which build models of the world,
gather evidence, learn, and progressively increase
confidence in their own autonomous decisions.

More ambitiously, want to apply concepts and tools from
the realm of autonomic systems for the design of systems
which must be highly adaptable during their lifetime.

Examples

access control systems
privacy and security systems
traffic control systems . . .

Not a bio-inspired approach: Biological systems are
fundamentally non-linear, and thus largely unpredictable.
They exhibit splendid properties of self-organisation,
context-awareness, adaptability and autonomy, but work
by trial and error, on evolutionary timescales.

V. Sassone Software-Intensive Sys

94

Autonomy as a Design Principle

Need to design systems which build models of the world,
gather evidence, learn, and progressively increase
confidence in their own autonomous decisions.

More ambitiously, want to apply concepts and tools from
the realm of autonomic systems for the design of systems
which must be highly adaptable during their lifetime.

Examples

access control systems
privacy and security systems
traffic control systems . . .

A CS approach: Provide solid foundations for autonomic
systems, via a system-and-theory integrated approach:
make abstract models, use them for predictions, embed
the in middleware and programs.

V. Sassone Software-Intensive Sys

Two paradigmatic examples

Examples

Third-party resource usage
negotation of lease for resources
pricing policies based on context-awareness
code reputation . . .

London congestion charges
traffic monitoring
pricing per time
car reputation . . .

V. Sassone Software-Intensive Sys

95

The first steps

Understanding autonomy at its foundations. Initially, a model for
processes to explore their surroundings via risk-assessment
techniques (e.g. trust and reputation).

More generally, we look at context-awareness as the
central notion to equip systems with the tools for autonomy.

Basic Enabling Theories

Concurrency & Mobility
Game Theory & MicroEconomics
Trust & Reputation Theory

Immediate Challenges

Integrate several theories
Yield models & validation mechanisms
Design languages & middleware

V. Sassone Software-Intensive Sys

Example: A model of trust

N, M ::= ε (empty) P, Q ::= 0 (null)
| N | N (net-par) | Z (sub)
| a{ P }α (principal) | P | P (par)
| (νn) N (new-net) | (νn) P (new)

| !P (bang)
Z ::= p · ũ(ṽ) . P (output)

| φ :: p · ũ〈ṽ〉 . P (input)
| Z + Z (sum)

Communication

β � φ α′ = α + [b · l̃ � m̃] b : m̃ � p : x̃ = σ

a{ p · l̃(x̃) . P′ }α | b{ φ :: a · l̃〈m̃〉 . Q }β → a{ Pσ }α′ | b{ Q }β

V. Sassone Software-Intensive Sys

96

Conclusion

Next Step

A lot of work needed

Refine these ideas until they make sense

Find pilot projects, apply for fundings

V. Sassone Software-Intensive Sys

97

Work Directions in
Component-based Engineering

Joseph Sifakis
Verimag Grenoble

Report by M. Wirsing

Challenges (ARTIST)

• Heterogeneity
• Communication mechanisms, execution speed, granularity of computation,

variety of supports
• Unified model of computation for heterogeneous integration

Parallelism, time, resource management, performance

• Complexity
• Validation effort grows exponentially with the number of components integrated
• Replace a posteriori validation methods with incremental validation

• Composability: preserve functionality and quality across integration process
• Compositionality: infer the system properties from its component properties

• Intelligence
Means for improving quality (robustness and perfomance) of systems

• Reflexivity: capacity to analyze its own state
• Adaptability: capacity to adapt behaviour according to robustness and performance

objectives

98

Component-based Engineering

Problems of theoretical foundations
• Theory for composing heterogeneous components
• Theory for establishing correctness by construction

Sources of heterogeneity: interaction and execution
• Heterogeneity of interaction results from the presence of interactions that

may be atomic or non atomic, blocking or non blocking.
• Heterogeneity of execution can be characterized by the way threads are

scheduled. Synchronous and asynchronous execution reflect different
scheduling policies.

Approach

Layered description of components
• Three layers: behaviour, interaction and execution models
• general associative composition operator
• composability and compositionality results for deadlock-freedom.

99

Software Security

Engineering Software Intensive Systems
NSF/EU Advanced Joint Workshop, Edinburgh, Scotland

22-23 May 2004

Jeannette M. Wing
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA USA

2Attack Graphs Jeannette M. Wing

A New Research Focus: Software Security

• Security
– It’s about software, not the network.

• Software engineering
– Forget trying to solve the general problem.
– Solve it for one class of properties.
– Choose that class today to be one that is critical, timely, and

of societal benefit.
– For example, security!

100

3Attack Graphs Jeannette M. Wing

A Research Agenda for the Community

• Software design for security
– What will the buffer overrun problem of tomorrow be?

• Trustworthy software
– It’s not just security, but reliability, privacy, usability, …

• Security metrics
– Computer Research Associates Grand Challenge #3:

Make security risk management on par with quantitative
financial risk management.

• CRA Grand Challenges on Trustworthy Computing, November 16-18, 2003
http://www.cra.org/grand.challenges

4Attack Graphs Jeannette M. Wing

Secure By Design
Anticipating tomorrow’s attacks
• Above the level of code, beyond buffer overruns

What we need:
• Compositional techniques

– To discover interface mismatches that lead to security flaws, e.g., the
old Netscape+DNS problem:

if n2a(X) ∩ n2a(Y) ≠ ∅
then ∃x ∈ n2a(X) ∃y ∈ n2a(Y) s.t. connect(x, y)

– To anticipate emergent abusive behavior, e.g., spam, Google Bombs,
ballot-stuffing e-voting “bots”

• Software design principles with security in mind
– E.g., Defense in Depth, Principle of Least Privilege, Secure by Default
– Something akin to Abadi and Needham’s crypto protocol design

principles

101

5Attack Graphs Jeannette M. Wing

Secure by Design: MS03-007 Windows Server 2003 Unaffected
example from David Aucsmith

The underlying The underlying
DLL (NTDLL.DLL) DLL (NTDLL.DLL)
was not vulnerablewas not vulnerable

Code made more conservative Code made more conservative
during the Security Pushduring the Security Push

EvenEven if it was if it was
vulnerablevulnerable

IIS 6.0 not running by default on IIS 6.0 not running by default on
Windows Server 2003Windows Server 2003

EvenEven if it was if it was
runningrunning

IIS 6.0 doesnIIS 6.0 doesn’’t have t have WebDAVWebDAV
enabled by defaultenabled by default

EvenEven if it did have if it did have
WebDAVWebDAV enabledenabled

Maximum URL length in IIS 6.0 is 16KB Maximum URL length in IIS 6.0 is 16KB
by default (> 64KB needed for exploit)by default (> 64KB needed for exploit)

EvenEven if the buffer if the buffer
was large enoughwas large enough

Process halts rather than executes Process halts rather than executes
malicious code, due to buffer overrun malicious code, due to buffer overrun
detection code (detection code (--GS)GS)

EvenEven if there was if there was
an exploitable an exploitable
buffer overrunbuffer overrun

Would have occurred in Would have occurred in w3wp.exe w3wp.exe which which
is now running as `network serviceis now running as `network service’’

Check PreconditionCheck Precondition

Secure by DefaultSecure by Default

Secure by DefaultSecure by Default

Tighten Tighten PostconditionPostcondition,,
Check PreconditionCheck Precondition

Tighten precondition, Tighten precondition,
Secure by DefaultSecure by Default

Least PrivilegeLeast Privilege

Defense in DepthDefense in Depth

6Attack Graphs Jeannette M. Wing

Trustworthy Software

• Reliability
– Focus on correctness
– Goal: Checking interface mismatches for design-level

vulnerabilities.
• Security

– Focus on authorized access
– Goal: Design with security in mind.

• Privacy
– Focus on authorized use, perhaps after release
– Goal: Identify a mathematical structure for privacy that

Lampson’s access matrix is for security.
• Usability

– Humans are often the weakest link.
– Goal: Balance between convenience and control.

102

7Attack Graphs Jeannette M. Wing

Security Metrics: Quantitative Security Analysis

CRA Grand Challenge: Within 10 years, develop quantitative
information-systems risk management that is at least as good as
quantitative financial risk management.

• Computing Research Associates Grand Challenges on Trustworthy Computing,
November 16-18, 2003 http://www.cra.org/grand.challenges

Questions the CIO Cannot Answer:

• How much risk am I carrying?
• Am I better off this year than last?
• Am I spending the right amount of money on the right things?
• How do I compare to my peers?
• What risk transfer options do I have?

8Attack Graphs Jeannette M. Wing

Security Axiom

Good guys and bad guys are in a never-ending race!

Trustworthy

103

Model Driven Development for
Software-Intensive Systems:

First Results

Ira Baxter, Connie Heitmeyer, Insup Lee,
Stephan Merz, Martin Wirsing

Content

• State of art
• Core Definitions
• Challenges

104

State of the art

• Good development techniques
including analysis, verification and code generation available at programming level,
not at higher levels.

• Model checking available for RT and hybrid automata
• Lack of standards for RT components
• Static deployment of components
• Static predictability of resources

Core Definitions

Requirements
Required external (observable) behavior of the system

Model
Sound abstraction of reality

Specification
All behavioral information

105

Challenges

• Techniques for constructing
very high quality requirements specifications

including verification, validation, feedback, tradeoffs, …

• “Semantic component algebra”
Techniques for

• decomposing systems into modules,
• constructing systems from components in compositional way
• transforming systems of components for optimisation and change

• “Disappearing formal methods”
Develop reasoning, analysis and transformation techniques at the level of
domain-specific languages such that formal methods are just used for
proving the correctness of the domain-specific techniques.

Challenges

• SWIS design and requirements validation
Scaling up formal methods and tools to SWIS design and requirements
including

• model driven test case generation
• exploitation of compositional structure for verification

• “Power proof”
Develop a high level language for proofs

• Experimental challenges:
Define a suite of case studies for reference developments
from different SWI application domains

106

EU-NSF Workshop on
Engineering Software-Intensive

Systems

Report by
Don Batory

University of Texas at Austin
In cooperation with C. Heitmeyer, M. Wirsing

EU-NSF Strategic Workshop Series

• Joint initiative of CISE-NSF and FET-EU
• Organized by ERCIM
• Goals:

Identify key research challenges and opportunities in Information Technologies

107

3D. Batory, C. Heitmeyer, M. Wirsing, EU-NSF Workshop Edinburgh

Software-Intensive Systems

Situation
Daily life depends on complex SW-intensive systems

in banking, communication, transportation, medicine, …
New emerging technologies

Global computation systems
Internet, Grid, pervasive computing, service-oriented computing …

Embedded systems
Automotive, avionics, …

Definition
Software-intensive systems are programmable systems that include

dynamic evolutionary systems,
exhibit adaptive and anticipatory behaviour,
process not only data but knowledge,
are under user control

4D. Batory, C. Heitmeyer, M. Wirsing, EU-NSF Workshop Edinburgh

Application domains

Automotive systems

Medical devices and
services

Virtual companies and
virtual business networks
(Network and application
management)

Mobile and personalized
Information services
(Seamlessly location based
and shared services)

Web services for
combination of private and
business application
(Intermediation and broker
services)

108

5D. Batory, C. Heitmeyer, M. Wirsing, EU-NSF Workshop Edinburgh

Challenges of
Engineering Software-Intensive Systems

Challenge:
Create adaptable systems (including self-adaptable systems)
in which software interacts with devices, sensors, humans

ensuring required levels of quality and trust

This requires

• requirements elicitation and documentation
• design for change at all levels of abstraction including

• requirements for change, architecture for change, models for change

• methods and techniques for reorganization of code

• static and dynamic adaptation

• methods for composition including

• Composition of heterogeneous components where heterogeneity e.g. deals with communication and
execution platforms and with synthesized code, COTS, legacy code, hand-crafted code, code that
implements abstract data types, etc.

• Compositional reasoning techniques for critical properties (e.g., behavioral, security, safety, fault
tolerance, real-time)

6D. Batory, C. Heitmeyer, M. Wirsing, EU-NSF Workshop Edinburgh

Challenges of
Engineering Software-Intensive Systems

• User-centred techniques for software development - i.e., user-friendly languages, analysis techniques,
simulation/animation, techniques, etc.

• Domain-specific

• Hide details of formal analysis

• Experimental challenges:
Define a suite of case studies for reference developments
from different SWI application domains (e.g., automatic, avionics, cell phones, medical devices, web
services, ...)

• Close gap between
Foundational modeling Pragmatic SW solutions
generic/ deep understanding complete, executable
science of design
but but
too abstract, partial, incomplete inconsistent, not reliable, not interoperable
… not well structured …

109

110

Appendix A: Workshop Agenda

Saturday, May 22

 9:00 - 9:30 The ERCIM workshop series by Remi Ronchaud

Introduction by Martin Wirsing

 9:30 - 10:30 Presentations of challenges and research issues by participants
 Don Batory, Carlo Ghezzi, Connie Heitmeyer, Luqi

11:00 - 12:30 Presentations of challenges and research issues by participants
 Jeannette Wing (Report by M. Wirsing), Vladimiro Sassone, Insup Lee,

Jose Fiadeiro, Oscar Nierstrasz, Ira Baxter, Simon Dobson

14:00 - 15:00 Presentations of challenges and research issues by participants
 Rance Cleaveland, Stefan Jähnichen, Stephan Merz,

Joseph Sifakis (Report by M. Wirsing), Kevin Sullivan

15:00 - 15:30 Identification of challenges and research topics

16:00 - 18:00 Discussion of topics in working groups

Sunday, May 23

 8:30 - 9:30 Presentations of challenges and research issues by participants: Jeff Kramer;

Presentation and discussion of first results of the working groups

 9:30 - 10:30 Discussion of topics in working groups

11:00 - 12:30 Discussion of topics in working groups

14:00 - 16:00 Presentations of results of working groups and final discussion

111

112

Appendix B: Participants and CVs

Organisation
Martin Wirsing, LMU Munich, Germany wirsing@lmu.de
Remi Ronchaud, ERCIM, France remi.ronchaud@ercim.org

Participants
Europe
Simon Dobson, Trinity College, Dublin, Ireland simon.dobson@cs.tcd.ie
Carlo Ghezzi, Politecnico di Milano, Italy carlo.ghezzi@polimi.it
Stefan Jähnichen, FhG First & TU Berlin jaehn@cs.tu-berlin.de
Jeff Kramer, Imperial College, London, GB jk@doc.ic.ac.uk
Jose Fiadeiro, University of Leicester jose@fiadeiro.org
Stephan Merz, INRIA, Nancy, France Stephan.Merz@loria.fr
Oscar Nierstrasz, Bern, Switzerland oscar.nierstrasz@acm.org
Vladimiro Sassone, University of Sussex, GB vs@susx.ac.uk

USA
Don Batory, University of Texas at Austin batory@cs.utexas.edu
Ira Baxter, Semantic Designs idbaxter@semanticdesigns.com
Valdis Berzins, US Naval Postgraduate School, Monterey berzins@cs.nps.navy.mil
Rance Cleveland, SUNY, Stony Brook rance@cs.sunysb.edu
Constance L. Heitmeyer, Naval Research Laboratory, Washington DC,
 heitmeyer@itd.nrl.navy.mil
Insup Lee, University of Pennsylvania, Philadelphia lee@cis.upenn.edu
Luqi, US Naval Postgraduate School, Monterey luqi@cs.nps.navy.mil
Kevin Sullivan, University of Virginia sullivan@cs.virginia.edu

Australia
Karl Reed, La Trobe University, Victoria kreed@cs.latrobe.edu.au

Contributions by
Ed Brinksma, Twente, Netherlands brinksma@cs.utwente.nl
Joseph Sifakis, Verimag, Grenoble Joseph.Sifakis@imag.fr
Jeanette Wing, Carnegie Mellon University, Pittsburgh wing@cs.cmu.edu

113

Don Batory
Professor
Department of Computer Sciences
University of Texas at Austin
batory@cs.utexas.edu

Don Batory holds the David Bruton Centennial Professorship at The University of Texas at
Austin. He received a B.S. (1975) and M.Sc. (1977) degrees from Case Institute of
Technology, and a Ph.D. (1980) from the University of Toronto. He was an Associate Editor
of IEEE Transactions on Software Engineering (1999-2002), Associate Editor of ACM
Transactions on Database Systems (1986-1992), a member of the ACM Software Systems
Award Committee (1989-1993; Committee Chairman in 1992), Program Co-Chair for the
2002 Generative Programming and Component Engineering Conference. He has given
numerous tutorials on “Product-Line Architectures, Generators, and Reuse”, and is an
industry-consultant on product-line architectures. His research interests include generative
programming, domain-specific languages, software architectures, product-lines, and
databases.

Ira Baxter
Chief Technology Officer
Semantic Designs, Inc.
idbaxter@semanticdesigns.com

Dr. Baxter worked from 1970 until 1985 in industry where he designed metacompilers, time-
sharing and network operating systems. He received his Ph.D. in Computer Science in 1990
from the University of California at Irvine, focusing on design reuse using transformational
methods. Dr. Baxter spent several years with Schlumberger, working on a PDE-solver
generator for CM-5 supercomputers, and has consulted for Rockwell International on
industrial automation software engineering tools since 1994. In 1996, he founded Semantic
Designs (SD) to build DMS, scalable program transformation tools to bring automation to
software maintenance. Through SD, he consults on automated software analysis,
transformation and domain-specific synthesis methods. Dr. Baxter is the principal designer
and compiler implementer of SD’s PARLANSE, the parallel programming language
underlying DMS. His interests lie in program transformation, AI to support design, parallel
programming and operating systems.

114

Ed Brinksma
Professor
University of Twente
H.Brinksma@ewi.utwente.nl

Ed Brinksma holds the chair of Formal Methods and Tools at the University of Twente in the
Netherlands. His work concentrates on the application of formal methods to reactive systems,
ranging from fundamental contributions to industrial applications, as well as methodological
issues. In the past he has contributed to areas such as communication protocol specification,
specification-based test generation, stochastic process algebra, and guided model checking.
His current interests include testing theory for real-time systems, modelling and analysis of
hybrid systems, and real-time scheduling synthesis.

Ed served as an editor for IEEE Transactions on Software Engineering, and is on the editorial
boards of the Springer International Journals of Software Tools for Technology Transfer
(STTT) and Software and System Modeling (SoSym). He is a founding member of the
steering committee of the TACAS conference, and has served on the steering committees of
PSTV/FORTE, ETAPS and PAPM. Ed's research group participates in a great number of
(inter)national research projects with both academic and industrial partners, including the
European IST projects AMETIST (timed systems) and ARTIST (embedded systems).

Rance Cleaveland
Professor and CEO
SUNY at Stony Brook and Reactive Systems, Inc.
cleaveland@reactive-systems.com

Rance Cleaveland has published over 100 research papers in the area of formal modeling and
verification techniques for concurrent and distributed systems. His research interests include
process algebra; model checking; verification and validation tools; formalized approaches to
software engineering; and operational semantics. He is one of the original developers of the
Concurrency Workbench, an automatic verification tool in continuous distribution since 1988,
and Reactis®, a commercial testing and validation tool for embedded software. He is also a
co-founder the Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
conference and has served on over 40 program committees for technical conferences.
Cleaveland received his PhD in Computer Science in 1987 from Cornell University and
served on the Computer Science faculties at North Carolina State University and SUNY at
Stony Brook. He is currently on leave from Stony Brook to work full-time as CEO of
Reactive Systems, Inc., a company he co-founded.

115

Simon Dobson
Lecturer
Department of Computer Science
Trinity College, Dublin IE
simon.dobson@cs.tcd.ie

Dr Simon Dobson has a research career spanning nearly fifteen years working in government,
academia and industry. He began his research at the University of York working on
programming environments for scalable high-performance computers. He then spent five
years on the staff of the CLRC Rutherford Appleton Laboratory working on high-
performance distributed systems. He moved to Trinity College Dublin in 1997 where he has
worked on pervasive computing, context-aware systems, programming languages, semantics
and type theory. From 2001 to 2003 he was CEO of Aurium, a start-up company he co-
founded to develop context-aware software for the travel industry. He serves on the ICT
Ireland committee on the Commercialisation of R&D, and has served on a number of expert
advisory committees for the EU. He holds a BSc and DPhil in computer science, and is a
Chartered Engineer.

José Luiz Fiadeiro
Professor
University of Leicester
Department of Computer Science
jose@fiadeiro.org

José joined the University of Leicester in November 2002 as Professor of Software Science
and Engineering. He held previous academic positions at the Technical University of Lisbon
and the University of Lisbon, and visiting research positions at Imperial College, King's
College London, PUC–Rio de Janeiro, and the SRI International. He became chairman of the
IFIP WG 1.3 (Foundations of System Specification) in January 2004. José’s research
interests are in software specification formalisms and methods for complex software systems.
His main contributions have been in the formalisation of specification and program design
techniques using modal logics, and of their underlying modularisation principles using
category theory. His most recent work has focused on software architecture, including the
semantics of architectural connectors and the impact of coordination mechanisms in software
evolution. He is now focusing on the methodological and scientific challenges raised by
service-oriented computing.

116

Carlo Ghezzi
Professor
Dipartimento di Elettronica e Informazione
Politecnico di Milano, Milano, Italy
carlo.ghezzi@polimi.it

Carlo Ghezzi is a Professor of Software Engineering at Politecnico di Milano, where he has
been Department Chair and member of the Board of Directors. He is now a member of the
Academic Senate and the Rector’s delegate for Research. He held positions at the University
of Padova, the Universities of California at Los Angeles and Santa Barbara, the University of
North Carolina at Chapel Hill, ESLAI (Argentina), the Technical University of Vienna and
the University of Klagenfurt (Austria), the University of Lugano (Switzerland).
He collaborates with industry and governmental offices; he was the Italian representative in
ESPRIT (IV FP).
Ghezzi’s research has been focusing on various aspects of software engineering: from
programming languages supporting reliable, reusable, and evolvable software to formal
methods for specification and rapid prototyping, software quality control, formalization and
automation of the software process, languages and architectures for highly distributed
applications. He is the co-author of 5 books and nearly 120 papers published on international
journals or presented at international conferences. He is the Editor in Chief of the ACM
Transactions on Software Engineering and Methodology.

Constance Heitmeyer
Head, Software Engineering Section
Center for High Assurance Computer Systems
Naval Research Laboratory
heitmeyer@itd.nrl.navy.mil

Constance Heitmeyer, who heads a group of software engineering and formal methods
researchers at NRL, is the author of more than 100 technical papers and reports on software
requirements, real-time computing, formal specification and verification, and computer
security. She is chief designer of the SCR (Software Cost Reduction) toolset, a suite of tools
for specifying and analyzing software requirements that has been transferred into software
development practice. Currently, she is co-program chair for the 2nd International Conference
on Hardware/Software Co-Design (MEMOCODE 2004) and co-program chair of the
Experience Reports Track at the 27th ICSE. She has served on the steering committees of the
IFIP 2.9 Working Group on Software Requirements, the CUE initative, and the International
Requirements Engineering Conference series. She has presented numerous invited talks at
universities and international conferences and has served as an associate editor of ACM
TOSEM, SoSyM, the Real-Time Systems J, and the Requirements Eng. J.

117

Stefan Jähnichen

Director Professor
Fraunhofer FIRST Research group on Software Engineering - FR 5-6

Faculty for Electrical Engineering and Computer Science
 Technische Universität Berlin
jaehn@first.fraunhofer.de

Professor Stefan Jähnichen, born in 1947, received his Ph.D. (Dr.-Ing.) in electrical
engineering from the Technical University Berlin in 1974. Since 1998 he is managing and
scientific director of the Fraunhofer Institute for Computer Architecture and Software
Technology FIRST (former GMD FIRST). As a full professor he is furthermore leading the
research group on software engineering at the Department of Electrical Engineering and
Computer Science of the Technical University of Berlin. Stefan Jähnichen has a solid
experience in software engineering especially in programming languages and compilers
which he contributes to many national and international comitees such as the IFIP Working
Group 2.4 in System Programming Languages, the German Techonology Cooperation with
Latin-America (Brazil, Argentina, Chile and Mexico) or the Scientific Advisory Board
(Fachkolleg) for Informatics of the German Research Foundation (DFG). Stefan Jähnichen is
chief editor of the German research journal Informatik: Forschung & Entwicklung as well as
author of 10 books and approximately 50 papers in refereed conference proceedings and
journals.

Jeffrey Kramer
Head, Department of Computing
Imperial College London
j.kramer@imperial.ac.uk

Professor Jeff Kramer is Head of the Department of Computing at Imperial College. His
research interests include requirements engineering, software architectures and analysis
techniques, particularly as applied to concurrent and distributed software. He was a principal
investigator in the various research projects which led to the development of the CONIC
environment for configuration programming and the Darwin architectural description
language. His current research work is on behaviour analysis, the use of models in
requirements elaboration and architectural approaches to self-organising software systems.

Jeff Kramer is a Chartered Engineer, Fellow of the IEE and Fellow of the ACM. He was
program co-chair of the 21st ICSE (International Conference on Software Engineering) in Los
Angeles in 1999, Chair of the Steering Committee for ICSE from 2000 to 2002, associate
editor and member of the editorial board of ACM TOSEM from 1995 to 2001 and is currently
associate editor and member of the editorial board of IEEE TSE. He is co-author of a recent
book on Concurrency, co-author of a previous book on Distributed Systems and Computer
Networks, and the author of over 150 journal and conference publications.

118

Luqi
Professor
Computer Science Department
Naval Postgraduate School
luqi@nps.edu

Prof. Luqi, IEEE fellow, Professor of Naval Postgraduate School. Her research interest and
expertise in the past 20 years includes system automation, hardware and software integration,
software-intensive system modeling, safety-critical system design, computer-aided
prototyping, real-time and embedded systems, signal processing, specification languages,
requirements engineering, and software architecture. She funded software engineering
automation center and works with faculty and graduate students on hundreds of real world
projects on software intensive systems with the IEEE Technical Achievement Award in this
area. She has served on many editorial boards, including IEEE Software, Expert, and
Transactions on Software Engineering, and many conferences and workshops. She has
published over 200 refereed publications and has supervised hundreds of MS and Ph.D.
students.

Insup Lee
Professor
University of Pennsylvania
Department of Computer and Information Science
lee@cis.upenn.edu

Insup Lee is Professor in the Department of Computer and Information Science at the
University of Pennsylvania. He received a Ph.D. degree in Computer Science from
Univeristy of Wisconsin, 1983. His research interests include, embedded systems, real-time
computing, formal methods, wireless network, and software engineering. He has developed
programming concepts, language constructs, and operating systems for real-time systems. In
recent years, he has developed specification, analysis, and testing techniques based on real-
time process algebra (ACSR). In addition, he has devoloped a hierarchical specification
language for hybrid systems (CHARON). Based on CHARON, he is currently developing
techniques for automatic code generation and test generation. Furthermore, he is currently
working in proactive sensor networks. He also has benn developing the run-time monitoring
and checking framework (MaC) that can be used to assure the correctness of a running system
through monitoring and checking of safety and QoS properties. The prototype MaC system
has been implemented in Java and is currently being ported to Real-Time Java.

119

Stephan Merz
Directeur de Recherches
INRIA Lorraine & LORIA
Stephan.Merz@loria.fr

1987 Diplom, Technische Universität, Munich
1992 Ph.D., Ludwig-Maximilians-Universität, Munich
1993/94 postdoctoral stays at IRIT, Toulouse and at Systems Research Center, Digital
Equipment
 Corporation, Palo Alto, CA
1995-98 research grant, state of Bavaria, Germany
1998-2002 assistant professor, Ludwig-Maximilians-Universität, Munich
2002 habilitation degree, Ludwig-Maximilians-Universität, Munich
2002- directeur de recherches (senior researcher), INRIA Lorraine, Nancy, France

Oscar Nierstrasz
Professor of Computer Science
Institute of Computer Science (IAM)
University of Bern
oscar@iam.unibe.ch

Oscar Nierstrasz is a Professor of Computer Science at the Institute of Computer Science
(IAM) of the University of Bern, since 1994, where he leads the Software Composition
Group. Prof. Nierstrasz is the author of over seventy publications and co-author of the book
Object-Oriented Reengineering Patterns (Morgan Kaufmann, 2003).

The Software Composition Group carries out research in diverse aspects of how to make
systems more flexible with respect to changing requirements. Current research is focussed on
(i) programming languages and mechanisms to support the flexible composition of high-level,
component-based abstractions, and (ii) tools and environments to support the understanding,
analysis and transformation of software systems to more flexible, component-based designs.

120

Karl Reed
Assoc. Prof.
Department Computer Scicnce and Computer Engineering
La Trobe University
kreed@cs.latobe.edu.au

Karl Reed is a pioneer of software engineering education in Australia, and is recognised as
national spokesperson on industry policy, advising State and Federal Governments . Associate
Professor Reed has held positions, including Senior Visiting Fellow in the Faculty of Business
at the Royal Melbourne Institute of Technology University. He is a Fellow and an Honorary
Life Member of the Australian Computer Society, and Director of its Computer Systems and
Software Engineering Board. He was consultant editor to Australasian Computer World from
1978 to 1995. He was an Honorary Visiting Professor at the University of Middlesex from
2000 to 2002, and a Guest Scientist at the Fraunhofer Insiittute for experimental Software
Engineering (2003-2003). He was a Governor of the IEEE-Computer Society f (1997-
2000,2000-2002), and is currently the Chair of the IEEE-CS’ Technical Council on Software
Engineering (2000-2002,2002-2004). Reed is currently in the Computer Science and
Computer Engineering Department at La Trobe University, and was the Director of the
Amdahl Australian Intelligent Tools Program from 1989 to 1996. His research interests
include software testing, the nature of software engineering, Compilable restricted natural
languages, Web-page design, high-level software re-use, design isomorphisms, process
comparison software architecture,emailusage and industry policy.

Vladimiro Sassone
Professor
University of Sussex
vs@susx.ac.uk

My research activity concerns the semantics of concurrency and mobility. A central theme
thereof regards methods for safe resource management in mobile, distributed systems, aimed
at laying the foundations of robust, high-level programming paradigms for global ubiquitous
computing. Recently my interests expanded to include trust management and reputation
systems.
I am the Coordinator of the EU funded project ``MyThS: Models and Types for Security in
Distributed Systems'' (2002--2005), the Principal Investigator of the EPSRC ``Third-Party
Resource Usage for Pervasive Computing'' (2003--2006), and the Director of the EU Marie
Curie Research Training Centre ``DisCo: Foundations of Distributed Computation'' (2002--
2005). After completing my PhD in 1994, I held a Marie Curie Mobility Fellowship. I was
since employed in Aarhus, Pisa, London, Catania, Copenhagen and Sussex.

121

Jeannette Wing
Professor and Associate Dean
Department of Computer Science
Carnegie Mellon University
wing@cs.cmu.edu

Dr. Jeannette M. Wing is a Professor of Computer Science at Carnegie Mellon University.
She is the Associate Dean for Academic Affairs for the School of Computer Science and the
Associate Department Head for the Computer Science Ph.D. Program. She received her S.B.
and S.M. degrees in Electrical Engineering and Computer Science in 1979 and her Ph.D.
degree in Computer Science in 1983, all from MIT.

Professor Wing is the author or co-author of over 80 refereed journal and conference papers,
has presented over 160 invited and conference talks, and is or was on the editorial board of
seven journals. She is a member of the National Academies of Science's Computer Science
and Telecommunications Board and the Microsoft Trustworthy Computing Academic
Advisory Board. She was a member of the DARPA Information and Science Technology
Study (ISAT) Group and the National Science Foundation Scientific Advisory Board.
Professor Wing is an ACM Fellow and an IEEE Fellow.

Martin Wirsing
Professor
Institut für Informatik
Ludwig-Maximilians-Universität München
wirsing@lmu.de

Martin Wirsing is a Full Professor and Chair for Computer Science at Ludwig-Maximilians-
University of Munich, where he is also the head of the research group on Programming and
Software Technology. .He received his master, diploma and PhD degree in Mathematics from
the Universities of Paris 7 and Munich in 1971,1974 and 1976, and his habilitation degree in
Computer Science from Technical University of Munich in 1984.
Martin Wirsing is the editor of more than 15 books and has published more than 150 scientific
papers. His current research interests comprise software engineering for distributed mobile
systems and for hypermedia applications, object-oriented software development based on
formal methods, design and semantics of concurrent Java programs.
Martin Wirsing is member of the scientific committees of INRIA France, LORIA (Nancy,
France), and the Institute of Informatics of Hanoi (Vietnam). He is member of the editorial
board of several scientific journals and book series including Theoretical Computer Science
and Journal of Computer Science and Technology. He was and is involved in many national
and international projects sponsored among others by the European Commission, the
Deutsche Forschungsgemeinschaft and the German Ministry for Education and Research. In
the current Global Computing Initiative of the EC he is coordinating the project AGILE.

122

This workshop is part of a series of
strategic workshops to identify key
research challenges and opportunities
in Information Technology. These
workshops are organised by ERCIM,
the European Research Consortium
for Informatics and Mathematics, and
DIMACS the Center for Discrete
Mathematics & Theoretical Computer
Science. This initiative is supported
jointly by the European Commission’s
Information Society Technologies
Programme, Future and Emerging
Technologies Activity, and the US
National Science Foundation,
Directorate for Computer and
Information Science and Engineering.

More information about this initiative,
other workshops, as well as an elec-
tronic version of this report are avail-
able on the ERCIM website at
http://www.ercim.org/EU-NSF/

FET - Future and
Emerging Technologies

DIMACS — Center for
Discrete Mathematics

& Theoretical
Computer Science

