
 1

Using Attribute Grammars to Uniformly Represent
Structured Documents - Application to Information Retrieval

Alda Lopes Gançarski

Pierre et Marie Curie University, Laboratoire d’Informatique de Paris 6, Paris, France

Abstract

This paper presents an ongoing work to uniformly represent structured documents by mean of Attribute
Grammars (AG). Each document corresponds to a syntactic tree with nodes decorated with sets of attributes.
The values of these attributes correspond to characteristics which specify the semantics of both the textual
content and the structural elements. We show how to use this representation for the Information Retrieval (IR)
task from collections of structured documents. We give a brief global overview of the proposed DASTIR system,
describing the specification of the syntactic and the semantic parts of the AG generated to give the desired
response to a structural query.

Introduction

It has been recently a tremendous growth of the specification of structured textual information using the
standards Standard Generalised Mark-up Language (SGML), Hypertext Mark-up Language (HTML) and
eXtensible Markup Language (XML). Initially, the purpose of the use of marks in documents was to show how
texts should be printed or displayed. We can say that the process of marking a text is a way to make its
interpretation explicit. When a collection of documents share the kind of information they deal with, it is natural
to think about describing that information in the same way for all of them. For example, business letters have
almost all the same structure, so it is desirable that this structure would be described in a standard way. This
ideas where at the origins of a standard for specifying markup languages, the SGML, as a format of exchanging
documents. After that, the HTML was developed as an SGML application to show the documents in the world
wide web. This standard makes use of mainly presentation marks to describe how the textual parts must be
displayed by the browser, without taking into account the real structure of a document. More recently, XML
appeared as a simplification of SGML to be able to exchange documents in the web. XML documents have a
description richer than the simple but limited one provided by HTML. The specification of the structural
elements and their hierarchical relations for a certain type of documents is made through the Document Type
Definition (DTD).

Our work is based on the idea that we can take advantage of the markup information to represent
structured documents in a standard way in order to extract results from them, whatever the system application. A
natural way of representing the structure and the semantics of structured documents is by means of a AG
([RLH98], [NB98]). Not only it is a wide known and rather simple concept, but it also allows to uniformly
represent heterogeneous sources of structured information, avoiding to develop new intermediate specifications
or languages for specialised tasks. We argue that the AG formalism is powerful enough to express multiple
operations over documents collections.

A AG consists of a context independent grammar extended by a set of attributes (and rules for their
calculation) which specify the semantics of the analysed texts. If necessary, it also allows to impose contextual
conditions to productions, based on attribute values. The result of the syntactic and semantic analysis of a text is
an abstract syntax tree decorated with the attribute values (DAST). When an attribute value is calculated by the
production where the respective symbol is derived (i.e. it is on the left-hand side of the production) it is called
synthesised attribute. Otherwise, the attribute is called inherited. Synthesised attributes make the propagation of
the semantic information from the leaves up to the root of the syntax tree, while the inherited ones do the same
but from the root down to the leaves or between sibling nodes.

In this work, we focus on Information Retrieval (IR) using a simple format of structural queries. IR
consists of retrieving the relevant documents to a query, while returning as few as possible of non-relevant
documents. Moreover, the resulting documents should be ranked by their relevance to the query. Simple textual
representations, like “bag-of-words”, are used in IR to filter or classify the information via statistical techniques.
One possible representation is a vector in which the components store a measure of how representative is each
term to the meaning of the text. This measure is based on both the frequency of the term in a document and the
frequency of the term in all the documents. With the emergence of structured documents, the IR evolved in two
directions: (1) retrieving documents taking into account the structural parts relevance ([Wil94], [Hea94]) and (2)

 2

enriching the query formats with structural information to retrieve certain parts of documents ([NBY95],
[KM93]). Recent works tried to establish some form of relevance ranking in the results ([Lal00], [WFC99],
[HTK00], [SN00]), but it is still an opened research area.

The DASTIR System

Our system is composed of different modules, as shown on the Figure 1. Assuming the existence of the DTD (if
not, it can be inferred [FX93]), the AG Generator module will automatically generate a specific AG, as we will
show in the next section. The AG Analyser makes a syntactic and semantic analysis of an input document to
create the corresponding DAST. The textual contents and the structural information are used as arguments of
various external functions which compute the attribute values (for example, a function can compute the size of a
text). The query is a pair (element, textual restriction) which expresses the type of element to return and a
textual restriction over it (expressed as a natural language query). The AG analyser assign to each occurrence of
the specified element a measure of the relevance to the query. For that, it takes into account the relevance of the
textual information that the element contains, as well as its structural characteristics (for example the tag name).
The result of analysing one document is the ranked list of the relevant occurrences. After analysing all the
documents, the resulting lists can be merged to have a final ranked list of all the relevant element occurrences.
This result can be given to the user in several ways; for example, each occurrence may have a pointer to the
document it belongs to.

 DTD AG Generator

 AG Specification

 Textual Content
 Structured

Document Structure External
 Functions
 AG Analyser Attribute Values
 Structural
 Query

 DAST

Figure 1 - The DASTIR system.

The AG Generator

To represent a structured document by a DAST, we need to specify both the syntactic and the semantic
components of the AG. The syntactic component of the AG corresponds to the structure of the document. The
productions can be automatically constructed from the element declarations using a pre-defined set of generic
mapping rules. Each rule corresponds to a type of element declaration or a type of operator in the regular
expressions of the element contents. Due to space limitations, we omit here those rules, but the reader can refer
to [RLH98] for a similar approach.

The textual content is represented by a non-terminal symbol, Text, which derives in a terminal symbol that
corresponds to a string. The set of attributes for the IR task is:

- identifier: the unique identifier for the element occurrence;
- value: the intrinsic value of TEXT, not needing to be calculated;

 3

- elem_att: set of element characteristics, such as its parent, the number of children, the children names,
the path from the root1;

- text_att: set of textual characteristics, such as the size and the vector representation;
- relevance: the relevance of an element to the query, taking into account the textual and the structural

characteristics;
- select: binary value to detect the elements of the type specified in the query;
- old_rank_list: ranked list of relevant elements inherited from the partial DAST constructed until the

present element; it is initialised with an empty list in the production of the root symbol;
- new_rank_list: ranked list of relevant elements updated with the information coming from the partial

DAST with the present symbol as root.

An Example

We show now an example composed by a DTD which describes letters (in Figure 2), a corresponding instance
(in Figure 3), a query and the final DAST representation of the instance (in Figure 4).
 As specified in the DTD, each letter is composed by a textual element called Head followed by the
element Message. A Message is formed by a list of paragraphs, each one defined by the textual element
Paragraph. The letter given as example of this type of documents has a Head and a Message composed by two
paragraphs. The query asks for paragraphs talking about vacations (query = (Paragraph, “vacations”)). Based
on the DTD, the document and the query, the DASTIR system represents the document by a DAST where the
answer to the question is given.

In the DAST, the synthesised attributes appear on the right side of the derivation arrows and the
inherited ones, i.e. the ones that depend on attributes coming from the ascendants, on the left side. For
simplicity, the values of the attributes elem_att and text_att are omitted here. In this example, the relevance
attribute has a simplified calculation function: it is the frequency of the textual restrictions in the textual content,
here the frequency of the term “vacations”. Each symbol corresponding to an element is assigned a unique
natural number identifier. The select attribute has always the value 0, except for the two occurrences of the
desired element (Paragraph). The old ranked list of occurrences of the desired element (old_rank_list) for the
symbol Letter is an empty list since there is no partial DAST constructed until that node. Then, it is inherited by
Head (for clarity, the evolution of the list is indicated with dotted arrows). The corresponding updated list
(new_rank_list) remains empty because Head is not the desired element. This list is inherited by Message and
then by the first Paragraph in the old_rank_list attribute. The attribute select of this paragraph has the value 1.
Thus, a relevance value of 1 is stored in relevance, which means that there is one occurrence of the term
Vacations. The new ranked list becomes a single list with this paragraph’s identifier (4). The following
Paragraph has a relevance value of 2; consequently, the head of the ranked list becomes the identifier of this
paragraph (5, 4). This list is now passed up to Message and then to Letter. The final result of the IR process over
the instance is the new_rank_list attribute of the root symbol, i.e., (5, 4), which means that the Paragraph
corresponding to the identifier 5 (“I am in vacations! This year I plan to visit all Europe! I hope my vacations
will be good! Bye!”) is the most relevant to the query, followed by the Paragraph corresponding to the identifier
4 (“Hello! Are you already in vacations?”).

< !DOCTYPE Letter [
< !ELEMENT Letter (Head, Message) >
< !ELEMENT Head (#PCDATA) >
< !ELEMENT Message (Paragraph)+ >
< !ELEMENT Paragraph (#PCDATA)>]>

Figure 2 : The DTD for documents of type Letter.

<Letter>
<Head>14 Nov 2000, Dear Marianne: </Head>
<Message>
<Paragraph>Hello! Are you already in vacations?</Paragraph>
<Paragraph>I am in vacations! This year I plan to visit all Europe! I hope my
vacations will be good! Bye!</Paragraph>

1 For HTML documents, this characteristics can be specialised to give, for example, more weight to elements
like Title or Head.

 4

</Message>
</Letter>

Figure 3 : A XML document of type Letter.

 Letter

 identifier = 1 elem_att

old_rank_list = () relevance =3
select = 0
rank_list = (5, 4)

 Head Message

identifier = 2 elem_att identifier = 3 elem_att
old_rank_list= () relevance =0 old_rank_list = () relevance =3
 select = 0 select = 0

rank_list = () rank_list =(5, 4)

 Text

text_att
relevance = 0

 “14 Nov 2000, Dear Marianne”

Paragraph Paragraph

 identifier = 4 elem_att identifier = 5 elem_att
 old_rank_list = () relevance=1 old_rank_list=(4) relevance =2

 select = 1 select = 1
 rank_list=(4) rank_list =(5, 4)

 Text Text

 text_att text_att
 relevance = 1 relevance = 2

“Hello! Are you already in vacations?” “I am in vacations! … vacations … Bye!”

Figure 4 : The final DAST representation of the example XML document.

Conclusions

We have presented DASTIR, a system to make IR over collections of structured documents represented in
DASTs. This simple and effective representation can be shared by multiple applications by just defining the
dedicated external functions to achieve the specific goals. This approach can be extended to collections of other
document formats with some internal structuring scheme, such as PDF or latex. In this case, it is necessary to
develop the rules to map the marks of the documents in productions of the AG. These rules will be used in the
AG generator module similar to the one used for XML in this paper.

As future works, we intend to extend the AG specification in order to include attributes, entities,
hyperlinks and other multimedia information in the automatic generation of the AG. We believe that their
semantic can improve the IR task. When the documents are enriched with metadata, it can be used too to

 5

improve the semantic specification. Also, it is interesting to evaluate the possibility of extending the system to
accept more flexible structured queries.

Financial Support

This work is financially supported by the “Sub-Programa Ciência e Tecnologia do 2° Quadro Comunitário de
Apoio” of the Portuguese Foundation for Science and Technology.

References

[RLH98] J. Ramalho, A. Lopes and P. Henriques, Generating SGML specific editors: from DTDs to attribute
grammars, Mark-up Technologies’98, Chicago - USA, 1998.
[NB98] F. Neven and J. Bussche, Expressiveness of Structured Document Query Languages Based on Attribute
Grammar, ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 11-17,
ACM press, 1998.
[Wil94] R. Wilkinson, Effective retrieval of structured documents, in ACM SIGIR’94, 1994.
[Hea94] M. Hearst, Multi-paragraph segmentation of expository text, 23nd Annual Meeting of the Association
for Computational Linguistics, pages 9-16, New Mexico State University, Las Cruces, New Mexico, 1994.
[NBY95] G. Navarro and R. Baeza-Yates, A language for queries on structure and contents of textual
databases, ACM SIGIR’95, 1995.
[KM93] P. Kilpelainen and H. Mannila, Retrieval from hierarchical texts by partial patterns, ACM SIGIR’93,
1993.
[Lal97] M. Lalmas, A dempster-shafer theory of evidence applied to structured documents: Modelling
uncertainty, Research and Development in Information Retrieval, pages 110-118, 1997.
[WFC99] J. E. Wolff, H. Florke and A. B. Cremers, Xpres: a ranking approach to retrieval on structured
documents, Technical report, University of Bonn, Romerstr. 2164, D-53117, Germany, 1999.
[HTK00] Y. Hayashi, J. Tomota and G. Kikui, Searching text-rich XML documents with relevance ranking,
ACM SIGIR 2000 Workshop on XML and Information Retrieval, Athens, Greece, 2000.
[SN00] T. Schlieder and F. Naumann, Approximate tree embeeding for querying XML data, ACM SIGIR 2000
Workshop on XML and Information Retrieval, Athens, Greece, 2000.
[FX93] P. Fankhauser and Y. Xu, MarkItUp! An incremental approach to document structure recognition,
pages 447-456, 1993.

