
Comparison of di�erent Collection Fusion Models

in Distributed Information Retrieval

Alexander Steidinger

Department of Computer Science

Free University of Berlin

Abstract

Distributed information retrieval comes into play when a user wants to get information from di�erent

sources in parallel. One of the challenges of this topic is the Collection Fusion problem: The distinct

result lists of the underlying information retrieval systems (IR) have to be fused to give a global

relevance-ranked result list according to the user's information need.

In this paper several Collection Fusion models were scrutinized which obey certain restrictions.

They should not use more parameters than are given by common collections of distributed digital

libraries so that they could be deployed in a real-life distributed retrieval environment.

The selected models are evaluated in a test system with an interface to the IR systems of Managing

Gigabytes (MG) and Oracle. The quantitative analysis of the models was performed using test queries,

test documents and relevance evaluations from TREC.

Two test runs were executed, one with all four collections stored in MG, another with three

collections in MG and one in Oracle. The results of these test runs are discussed with respect to the

test setup.

1 Introduction

Digital libraries are becoming a more and more important source of information. Users want to retrieve

documents from these libraries ranked by relevance concerning the users' information needs. The general

ranking problem of information retrieval is enforced by the distribution of queries to di�erent document

collections. In this so-called Collection Fusion problem the local result lists retrieved from di�erent IR

systems should be merged to a global one upholding an optimal ranking concerning relevance to the user's

information need.

The main problems with Collection Fusion in Distributed Information Retrieval are:

� The sources use di�erent ranking algorithms.

� The ranking algorithms used by the sources are unknown.

� The parameters used with these algorithms (e.g., inverse document frequencies or term frequencies)

cannot be obtained from the sources.

The topic of this paper is the evaluation of di�erent Collection Fusion models. Some of them have been

described in literature, others were adapted from existing ones. They were selected from a greater set

of models with the constraint to be deployable in real-life environments where only some of the model

parameters are accessible.

Two test runs show which of the models are suitable to give good global result lists so that they can

be integrated into distributed information retrieval of documents of distributed digital libraries.

A more detailed presentation of all the models, the experimental setup and the results can be found in

[6]. The restrictions for selecting Collection Fusion models for further consideration come from the prop-

erties of real-world IR systems of publishers like Springer, Wiley, Elsevier or ACS (American Chemical

Society). They deliver relevance-ranked result lists of known length with a similarity score, no more.

It is possible to gain more information from the IR systems if single-term queries are posed. In that

case the document frequencies correspond to the length of the result lists. Of course, not all document

frequencies of all terms could be fetched this way, but querying the most important terms would suÆce.

It is impossible to get the term frequencies out of the result lists because they contain only biblio-

graphical data of documents like author, article title, journal title, and so on, but not the full text.

2 The Models

As explained in the introduction only those models will be tested here that use no more than the following

parameters:



� Relevance-ranked result lists. This is a prerequisite we will not talk about any further.

� Length of the result lists. This parameter is given by the publishers' IR systems mentioned above.

� Document frequencies (DF).

� Similarity scores for every delivered document in the result lists.

� Collection frequencies (CF). This is the number of non-empty result lists.

Models using one or more of the following parameters are discarded:

� Term frequencies like the common TF-IDF-models

� Collection size like in [3]

� Evaluation of the delivered relevance ranked lists for subsequent queries like in [1, 2]

� Number of documents known to be retrieved in advance like in [1].

Three of our six tested models were adapted or directly taken from [4]. The following subsections give a

brief overview of the tested models together with the parameters they use. The common prerequisite is

that the result lists are ordered by relevance rank. Is is assumed that the models are given result lists

from di�erent IR systems.

2.1 Round Robin (RR)

Prerequisite: -

The Round Robin model, also called Uniform model or Interleaving model simply removes the �rst

elements of the result lists in a round robin fashion and puts them into the global result list. The next

round starts with the now �rst elements of the result lists.

2.2 Round Robin Random (RRR)

Prerequisite: Length of the result lists

We build an array of the length
PjCj

k=1 lk where the sum goes over all the lengths lk of the result lists.

Now we toss a die with
PjCj

k=1 lk faces. An ideal die or an ideal random number generator will hit an

index belonging to collection j with the probability

Pj =
lj

PjCj
k=1 lk

Now the head of the list hit is removed and the procedure starts again now with the current result lists.

2.3 Round Robin Block (RRB)

Prerequisite: Length of the result lists

In this model we divide the length of all result lists by the length of the shortest non-empty list. The

rounded values are the block lengths of the lists. Now we remove from each result list a number of elements

due to the corresponding block lengths in a round robin fashion and put these blocks into the global result

list. The next round starts with the now shorter result lists, but with the same block lengths. When a

block length is bigger than the length of an actual list at the end, the whole list is taken into the global

result list.

2.4 Raw Scores (RS)

Prerequisite: Similarity scores for each delivered document

This model is also called Merge Sort model. It simply takes the elements into the global result list

corresponding to their similarity scores. The scores have to be normalized �rst to be comparable. Later

on we will see what problems can occur with such a normalization.



2.5 Normalized Inverse Document Frequency (NIDF)

Prerequisites: Similarity scores and document frequencies

This models uses the inverse document frequency (IDF). Since we don't know if the IR systems of digital

libraries use the IDF in their models (and if they do so what concrete expression they take for it) this

model uses a very simple notion of inverse document frequency: It's just the reciprocal of the document

frequency.

The IDF depends on the very collection of the used IR system. Our task is to weaken the inuence

of each collection by averaging over the di�erent IDF values. Strictly speaking, we build the following

normalized inverse document frequency for query term j:

IDF j =
1

jCj

jCjX

k=1

1

DF k
j

The sum goes over the number of collections, and DF k
j is the document frequency of term j in collection

k. Now a collection weight for collection k is computed for the current query by summing over all the

query terms the quotients of the normalized IDF and the IDF of collection k:

fk =

jQjX

j=1

IDF j

IDF k
j

=

jQjX

j=1

IDF j �DF k
j

The factor fk is now multiplied by the similiarity scores of collection k. The product is then used as a

new score after which the documents of the global result list are ordered.

2.6 Collection Weight (CW)

Prerequisites: Similarity scores, document frequencies, and collection frequencies

This model is a combination of two models described in [4]: DF-ICF-collection weighting and weighted

scores. This combination has the advantage that the collection scores needed by the second model are

delivered by the �rst one. The �rst model is as follows: The conditional probability of the occurrence of

term rj in collection ck is given by

P (rj jck) = db + (1� db) � T � I

where

T = dt + (1� dt) �
log(DF k

j + 0:5)

log(maxDFk + 1:0)

I =
log(

jCj+0:5
CFj

)

log(jCj+ 1:0)

where

DF k
j = number of documents in collection ck containing term rj

maxDFk = maximum document frequency in collection ck

CFj = collection frequency = number of collections containing term rj

dt = minimum value for term frequency of rj in collection ck

db = minimum value for the probability of the occurrence of rj in collection ck

The factors T and I stand for document frequency and inverse collection frequency. The later tests assume

a value of 0.4 for dt and db as taken from literature.

Remark: The values of T and I always lie between 0 and 1.

Now the P-values for a query term for the collections are averaged over the number of collections.

This average probability is further used as a collection score in the second model:

The weight of a term j of collection k is computed due to the model as

wk
j = 1 + jCj �

skj � sj

sj



where

jCj = number of searched collections

skj = score of collection k for term j

sj = averaged score for term j over all searched collections

We can now build a new score for document i from collection k by multiplying the similarity score with

the sum of the weights wk
j over all query terms. These new scores are used to build the global result list.

Remark: wk
j could become negative. For example, if there are 4 collections then: wk

j < 0, sj <
3

4
si. If

this is the case then documents ranked relevant will get at the end of the global list.

3 Experimental Setup

The experimental setup is based on the IRTUM/VIRUM test environment for Distributed Information

Retrieval [5].

The TREC collections of the �rst two TREC disks were divided into four collections of di�erent size.

The relevance judgements of TREC were used to adjust the number of documents to be retrieved from

each collection to mirror the number of relevant documents in each collection. 450 documents were to

be retrieved from collection 1, 150 from collection 2, 220 from collection 3, and 180 documents from

collection 4. Further a single collection was built containing all the 1000 documents. The four collections

were deployed in two IR-Systems: Managing Gigabytes (MG) and Oracle InterMedia Text.

The test queries were the TREC topics No 51-200. The narrative part of the topics was used as a

list of query terms. Stop words were eliminated and multiple terms were reduced to a single occurrence.

No stemming was performed because Oracle InterMedia stems the query termes already and multiple

stemming would do no good.

For the latter three Collection Fusion models the similarity scores of the delivered documents have to

be normalized. The Oracle scores are normalized a priori and lie in the range from 0 to 100. MG has no

normalized scores. This is due to a simpli�cation in the vector space model. We decided to normalize

both scores because Oracle never delivered documents with score 100. This has the advantage of both

IR systems delivering scores in the whole range up to 100 and no collection is preferred. This linear

transformation can of course lead to a distortion of the scores because we do not know how the scores of

the IR systems are computed.

Two tests are run: Run 1 only using MG, run 2 using collection 1 in Oracle and the other three in

MG. The Single Collection serves as a reference collection.

Problem with Oracle: Oracle allows to set a threshold in order to deliver only documents with

similarity score above this boundary. We set this value to 30 to get documents in tolerable time. As a

consequence less than the 450 documents of collection 1 are retrieved.

For the evaluation of the two test runs we used the TREC relevance judgements. From these a

graphical presentation was generated using the precision and recall measures with values taken after

every 5 documents retrieved.

4 Results

The evaluation showed that test run 1 yielded better results than test run 2. This was expected because

of the di�erent IR systems used in test run 2. Other tests showed that Oracle InterMedia itself generates

worse relevance judgements with respect to the TREC evaluations and therefore worse result lists.

In Fig. 1 the precision and recall values of the documents in the global result list for the Round Robin

Random model are shown. They are averaged over the 150 topics. For comparison there are also shown

the values of the Single Collection. The error bars are the standard deviations of the mean values.

The recall curve of the RRR model lies far below the Single Collection curve, and the intersection

with the ordinate after 1000 documents does so, too. The reason for this lies in the above mentioned

Oracle problem: Less than the 450 documents are retrieved so there are also less relevant documents

retrieved and the recall sinks.

In Fig. 2 you see the data for the NIDF model. The characteristics of the mean precision curve at

the �rst 200 delivered documents is due to the favourization of the Oracle collection by the model: The



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 100 200 300 400 500 600 700 800 900 1000

pr
ec

is
io

n 
an

d 
re

ca
ll

number of documents in global result list

mean precision Oracle Round Robin Random
mean recall Oracle Round Robin Random

mean precision Single Collection
mean recall Single Collection

Fig. 1: Round Robin Random: precision and recall averaged over the topics in

contrast to the single collection

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 100 200 300 400 500 600 700 800 900 1000

pr
ec

is
io

n 
an

d 
re

ca
ll

number of documents in global result list

mean precision Oracle Normalized IDF
mean recall Oracle Normalized IDF

mean precision Single Collection
mean recall Single Collection

Fig. 2: Normalized IDF: precision and recall averaged over the topics in contrast to

the single collection

collection weight for the Oracle collection is much higher than the weights of the other collections so at

�rst most of the Oracle documents are put to the global result list.

The curve also shows that the Oracle ranking is poor, a lot of non-relevant documents are retrieved

�rst and relevant documents came at the end of the result list or are not retrieved at all. When documents

of the MG collections start in the global result list the precision even goes up a little bit.

The main results not shown here are:

The Round Robin Random and Round Robin Block models yield the best results in both test runs. Not

far behind lies the Raw Score model. The collection weight model shows the same results as the Raw

Score model. The reason for this behaviour lies in the parameter settings of the model. The collection

weights di�er to less to change the to change the order of the retrieved documents in the global result

list compared to the order of the Raw Score model.



The by far worst model is the NIDF model. The reason for this is that the di�erences in the collection

weights are big, sometimes they di�er by a factor of two. This could be due to the simple use of the

reciprocal of the document frequencies. Thus there is a demixing of the collections with the Oracle

collection coming �rst in the global result list.

5 Discussion

Why are the simplest models best in our test environment? They do not depend on quantitative pa-

rameters like the document score, they only use the length of the ordered result lists. This makes them

insensitive to collection-sensitive parameters. Also the number of documents to be retrieved from each

collection was optimized, see the Experimental Setup.

The quality of the results also depends on the quality of the IR systems. When long result lists are

retrieved from IR systems with a good ranking algorithm then the RRR and RRB models yield good

results, because from the beginning more documents were taken from the long good result lists than from

the shorter ones either in bigger blocks in RRB or randomly in RRR.

The quality of RRR should be even better than RRB because there is no �xed order like round robin

after which the result lists are processed. The RRB always starts fetching documents from the same

result list every round, so in the worst case a bad result list is processed �rst.

The bad thing is, when there are poor long result lists these models would yield worse results, as is

the case with Oracle. But even then the test runs showed they perform better than the Round Robin

model.

The results of the more complex algorithms like NIDF or CW could possibly be optimized by tuning

of the model parameters. So a di�erence between the results of the Raw Score model and the Collection

Weight model could be reached. One can think of using a more sophisticated expression for the inverse

document frequency in NIDF like a logarithm than was applied here.

6 Outlook

The results show that the Round Robin Random and Round Robin Block models can be used in real

query interfaces to establish distributed information retrieval in publishing houses even if not very good

result lists are retrieved. They outperform the simple Round Robin model.

If heterogeneous collecions were used, a collection selection should be performed for the results pre-

sented here work under the assumption of more or less homogeneous collecions.

Implementations of the above models are currently deployed in a prototypical distributed retrieval

interface in the Darwin system [7], a digital library for electronic journals at the Free University of Berlin.

It allows the users to query di�erent publishers' IR systems in parallel.

References

[1] E.M. Voorhees, N.K. Gupta, B. Johnson-Laird. Learning collection fusion strategies. ACM SIGIR,

172-179, 1995

[2] L. Gravano, H. Garcia-Molina. Merging ranks from heterogeneous internet sources, VLDB Conf.,

196-205, 1997

[3] C. Baumgarten. A probabilistic solution to the selection and fusion problem in distributed informa-

tion retrieval. ACM SIGIR, 246-253, 1999

[4] J.P. Callan, Z. Lu, W.B. Croft. Searching distributed collections with inference networks. ACM

SIGIR, 21-28, 1995

[5] A. Grieger: SUVIR - Ein System zur Untersuchung von Verteiltem Information Retrieval, Master

Thesis, FU Berlin, 2000, http://www.inf.fu-berlin.de/int/ag-db/index.html

[6] A. Steidinger: Das Collection Fusion Problem bei verteiltem Information Retrieval auf Ver-

lagsservern, Master Thesis, FU Berlin, 2000, http://www.inf.fu-berlin.de/inst/ag-db/index.html

[7] Darwin - Digitale Naturwissenschaftliche Bibliothek der FU Berlin. http://darwin.inf.fu-berlin.de


