Understanding and Supporting Multiple Information Seeking Behaviors in a Single Interface Framework

Nicholas J. Belkin

School of Communication, Information & Library Studies Rutgers University New Brunswick NJ 08901-1071 USA nick@belkin.rutgers.edu

(From slide presentation)

What is a Digital Library?

An *institution* which performs and/or supports (at least) the *functions* of a *library* in the context of *distributed*, *networked collections* of information objects in *digital* form.

Functions of a Library

- Selecting
- Collecting
- Preserving
- Organizing
- Representing
- Providing access to
- Ensuring knowledge of
- Disseminating

Information objects

• Mediating between

• Supporting interaction between

Information users and (collections of) information objects

Structure of Today's Talk

- Description of our approach to Information Retrieval (IR)
- Description of our TIPSTER Phase III project
- Some results on classification of interactions with information
- Support for four "prototypical" interactions
- Some results from our TREC-7 studies

Project Hypotheses

- People engage in multiple information seeking strategies (ISSs) and multiple types of interaction with information during the course of a single information seeking episode
- Different combinations of IR techniques will be appropriate for supporting different ISSs

Goals of the Project

- Identify and classify the interactions with information that people (i.e. a group or community) engage in
- Develop individual systems each of which supports one of a range of such behaviors and test them
- Integrate the different systems within a single system and interface framework which supports graceful movement from one kind of interaction to another, and test it

In Other Words

- Identify and classify a range of different ISSs
- Characterize sequential structures of ISSs
- Identify specific combinations of IR techniques appropriate for different ISSs
- Construct and evaluate system which adapts to support different ISSs in the course of a single information seeking episode

To Accomplish Our Goals

- Study a group of information-intensive workers in their normal task environments; content analysis and classification of interactions with information
- Choose representative range of interactions; stipulate system designs to support each; test each against baseline system
- Integrate different support designs within common, object-oriented framework; implement common interface; test against baseline system

Underpinnings of our Approach

- People engage in many kinds of interactions with information, in single and across multiple information-seeking episodes
- Each kind of interaction requires a different kind of support, but support for all should be provided in a single system
- Each kind of support can be understood as a different combination of the different ways to implement the different IR processes
- An object-oriented framework provides a structure which allows multiple combinations of techniques

Project Theory

- Dimensions of ISSs
- IR as support for interaction with information
- Structured information interaction
- Combining from classes of IR techniques to develop specific systems for support of specific ISSs

What's Been Done

- Specific community has been studied; faceted classification of interactions with information has been developed; characteristics of information-seeking interactions have been identified
- Four prototypical kinds of interactions with information related to informationseeking identified; functional specification of support for each designed
- One support system implemented, with preliminary evaluation; one support system partially implemented
- O-O framework implemented, subsequently discarded

The Problem

- Design an information system which supports different information seeking behaviors
- Identifying and characterizing information seeking behaviors
- Identifying and testing techniques for supporting those behaviors

The Approach

- Identify a group of people who interact with information as a part of their normal task environment
- Observe and record their interactions with information, in relation to their tasks, goals and intentions

Classifying Information Behavior

- Interview information-intensive workers in task environments about their information behaviors
- Content analysis of interviews to identify
 - Resources interacted with
 - Tasks leading to interactions
 - Intentions of interactions
 - Types of interactions
 - Dimensions of interactions

The Approach

- Analyse the data to identify common dimensions of interaction with information
- Analyse the data to relate tasks, goals and intentions to specific information behaviors
- Analyse the data to relate system functionalities to information behaviors
- Analyse the data to identify patterns of information behaviors

The Methods

- Last stab:
 - at beginning of work day, give subjects an "activity notes" log to fill out during day
 - at close of day, interview on today's tasks and activities and on other normal tasks and activities
- Pilot results:
 - good data, not too much work, not too obtrusive. USE IT!!

Subjects

- 14 managers, engineers, technical staff at various parts of Boeing, Seattle
- Opportunistic sample, selected with both variety and enthusiasm in mind
- 3 female, 11 male

Subject Speciality Distribution

- Sysadmin
- Team leader
 - Web infrastructure
 - Web standards and use
 - Technology assess. & development
- Web infrastructure
- Web design
- Technical writer
- Strategy formulation
- IS support manager (2)
- Manager
 - enterprise architecture deployment
 - technical communication
 - technical library
 - technology assessment

Data

- Job descriptions
- Activity notes

• Transcriptions of audiotaped interviews (1 1/2 - 2 hours/interview)

Data Analysis

- Initial identification of tasks which subjects perform in accordance with their positions and job descriptions
- Content analysis of transcribed interviews, interpretation aided by activity notes forms

Interviews Coded According to

- activity/resource interacted with
- task
- intention
- type of interaction
 - communication
 - information
- common dimensions of interaction type
- kinds of interaction
- dimensions specific to kinds of interaction
- criteria for interaction

Communication Behaviors

- Classified according to
 - Medium
 - speech, text, ...
 - Mode
 - face-to-face, mediated, ...
 - Mapping
 - one-to-one, one-to-many, many-to-many

Information Behaviors

- Create
- Disseminate
- Organize
- Preserve
- Access
- Evaluate
- Comprehend (e.g. read, listen)
- Modify
- Use (e.g. interpret)

Objects Interacted With

- Level (e.g. information, meta-information)
- Medium (e.g. image, written text, speech)
- Quantity (e.g. one object, set of objects, database of objects)

Common Dimensions of Information Interactions

- Information Object part -- whole
- Systematicity random -- systematic
- Degree
 - selective exhaustive

Criteria of Interaction

- time
- topic
- person
- importance
- alphabet
- authority
- accuracy
- and so on

Dimensions of Access

• method

scan -- search

• mode

recognize - specify

Prototypical Information Interactions

- Finding a known(?) information object
- Recognizing useful information objects by scanning through an information resource
- Evaluating the usefulness of information objects
- Determining the content / structure of a set or collection of information objects

Known Item Support

- Query by form (or example)
- Best, or partial (e.g. soundex) match (or range) on all fields
- Data fusion

- Field indexing
- Query reformulation support

Evaluating Information Items

- Scrollable displays of information objects
- Query-based summaries or focused display of information objects
- Clustered organization
- Saving and labelling

Learning Contents of Resources

- Labelled a priori classes with numbers of information objects in class
- Labelled ad hoc query-based classes
- Dynamic reclassification
- Examples

Finding Useful Items by Recognition

- Minimal unstructured query
- Automatic query expansion
- Classification of retrieval results
- Label clusters, display at levels of hierarchy
- Interaction with clusters and objects
- Summarize information objects
- Save and label objects
- Relevance feedback (+ & -)

Experimental Protocol

- Four experimental systems, one designed to support each type of information interaction
- Baseline system, best current generic IR system
- Tasks designed for each information interaction type
- Within subjects design, for each system, compare performance in baseline and experimental system

Baseline System

- Unstructured query, minimal syntax
- Stop word / stop phrase
- Field specification
- Term suggestion device
- Best match (based on InQuery)
- Positive and negative relevance feedback as term suggestion

System to Support Finding Useful Items in Unfamiliar Domain by Recognition

- Carried out within the TREC-7 Interactive Track
- Task is: Given a general topic area, find documents that identify the different aspects, instances, points of view with respect to that topic; save one document which represents each different aspect,...
- Point is to find and save one document per aspect, not all of the documents
- Example: "What are the different ways to treat high blood pressure?" Saving one document that lists them all satisfies the task; saving ten documents, each of which discusses one of the ten different ways, does too.

Preliminary Results for inq-R

- Relevance feedback (positive) as term selection device understood as useful and usable for the task
- No difference in performance between positive only vs positive + negative relevance feedback conditions
- Relevance feedback supports exploration
- Relevance feedback supports recognition
- Labelling supports task
- Best passage feature supports recognition
- MORE TO BE REPORTED AT TREC-7