
Networks of Language Processors:

a language theoretic approach to �ltering and

cooperation

Erzs�ebet Csuhaj-Varj�u �

Computer and Automation Research Institute

Hungarian Academy of Sciences

Kende u. 13-17

H-1111 Budapest

Hungary

E-mail: csuhaj@sztaki.hu

Abstract

Networks of language processors (NLP systems) is a collective term which has been intro-
duced as a formal language theoretic framework for describing symbolic processing in highly
(massively) parallel and distributed architectures. Roughly speaking, an NLP system consists
of several language determining devices (language processors) which are located at nodes of
a virtual graph (a network) and which rewrite strings and communicate them through the
network. In this paper we briey discuss the model and introduce a particular variant which
can be considered as a formal model for collaborating agents which communicate with each
other through a network and use recommendations for �ltering information.

1 Introduction

One of the most challenging problems of current computer science is to develop sophisticated, highly
reliable tools for supporting e�ective information dissemination and information search performed
by users of computer networks. All who use Internet face similar questions every day: how to
choose from the lot of information received and to be communicated, how to select the useful or
the important ones from the multitude of the arriving messages. These and similar problems are
frequently discussed in the case of groups of agents collaborating through networks and formulating
and using recommendations for �ltering information ([1]).

The solutions of these problems and the answers to these questions suppose having an elaborated
semantic background, but to develop suitable and convenient software tools for supporting e�ective
information �ltering, also syntactic aspects have to be carefully studied.

A project, titled " Networks of Language Processors" started last year at the Research Group
on Modelling Multi-Agent Systems, at the Computer and Automation Research Institute of the
Hungarian Academy of Sciences, with the aim of describing at the pure syntactic level charac-
teristics of the behaviour of agents and agent communities using a network for cooperation and
communication and to o�er tools for designing languages supporting collaborative text processing
via networks.

The research is mainly based on tools of formal languages, a traditional area of theoretical
computer science, and it is a continuation of investigations that have been done for years by an
international team in a recent �eld of formal language theory called (parallel communicating)
grammar systems ([9], [3]).

The developed framework is called networks of language processors (NLP systems). This col-
lective term originally has been introduced as a formal language theoretic framework for describing

�Research supported by Hungarian Scienti�c Research Fund "OTKA" No. T 017 105

1

symbolic processing in highly (massively) parallel and distributed architectures ([6]). The model
was strongly motivated by some known models and paradigms ([7]),[8],[11],[10]). Arguments for
formulating such a concept were, among other things, the claim to provide reliable language theo-
retic support for networked computing, for social networks, for describing the behaviour of mainly
locally connected processor arrays, and understanding the nature of massively parallel and dis-
tributed architectures, including ones with biological or other nature-motivated background.

NLP systems capture properties of some related notions from formal language theory: the test
tube systems ([4]), language theoretic constructs for distributed architectures from DNA comput-
ing, parallel communicating grammar systems ([3]), models motivated by distributed and decen-
tralized problem solving systems, grammar systems with WAVE-like communication, providing
grammatical models of the so-called Logic Flow paradigm ([5]).

2 Networks of language processors

In the following we briey describe the main characteristics of the framework. For further details
and information the reader is referred to [6] and [2].

A network of language processors (an NLP system, for short) consists of several language
determining devices (or mechanisms computing multisets of strings), called language processors.
These form the components of the system.

Each language processor represents an agent which processes textual information and coop-
erates with the other ones by communicating information pieces. Every language processor is
located at some node of a virtual graph (a network), moreover, there is no more than one language
processor at each node.

The language processors of the NLP system operate on strings (on sets of strings or multisets of
strings) by performing rewriting steps and communication steps, usually alternately. The strings
can represent data and/or programs (the latter correspond to language theoretic operations in
coded form, or to sets of rewriting rules); both kinds of them can be rewritten and communicated.
The same string can be interpreted at di�erent components in di�erent manners: it can play the
role of a piece of data at some component and that of a rewriting rule at some another one. Thus,
the agents can modify the information they have available and they can communicate it to each
other. This information can be textual data (strings representing data) or it can be some rule of
information handling (program, operation code).

During the functioning of the system new agents can join the network and agents are allowed
to leave the agents' community. This leads to a exible, self-organizing topology of the network.
Thus, creation of new components and deletion of some existing ones are allowed, which can be
done both as a result of a rewriting step and/or a communication step.

The NLP system is functioning by changing its states (if the rewriting rule sets can be modi�ed,
then we use the term "con�guration" instead of the term "state"). At any moment of time, the
state of the network is described by the sets of string (multisets of strings) present at that moment
at the components. Thus, at any moment of time the agents' community is represented by the
collection of strings the agents have available at that moment.

At the beginning of functioning, each component of the NLP system is initialized by a language
processor (a (�nite) set of rewriting rules and the way of its application: for example, a production
set of a grammar) and a �nite set of initial strings, the axioms. These, together, form the initial
state (or the initial con�guration) of the system.

The change of the state of the NLP system can take place either by a rewriting step or by a
communication step. By a rewriting step, some strings present at some component are rewritten
according to the rewriting rule set and rewriting mode of the component (by the metarules in the
case of changing the rewriting rules).

By a communication step, some strings (or copies of some strings) which are present at some
component and satisfy some condition are communicated to one or more components. The target
components are determined by a neighbourhood relation: each language processor is allowed to
try to transmit strings only to its neighbours.

Thus, communication is realized through (mainly) local interactions among the components.
(Clearly, in some very special cases, the neighbourhood relation makes a broadcast possible.)

The language processors in the network can work either in synchronized or in asynchronous
manner.

During the functioning of the NLP system, the communication structure can dynamically vary
or it can remain unchanged. The communicated strings are processed by the components which
receive them. This can take place in various manners: for example, the arriving strings join the
available string community of the component or they are concatenated to some of the strings
present at the component.

The conditions for communication can be de�ned in several ways. One of the most important
variants is that one where context conditions are imposed on the strings to check whether the
current string can be communicated or not (for example, the existence of some kind of substrings
of the string is tested). This, often, is given in the form of �lter or selector languages, that should
contain as an element the string to be sent or received. The components can have both an input and
an output (entrance and exit) �lter. Thus, each agent controls the information ow by using some
selector mechanism in order to distinguish useful or important information from the arriving or
sent messages. This is similar to what takes place in email systems: some messages have priorities
to the other ones both in sending and receiving/reading.

Some components (agents) can have the same input and/or output �lter: they form a team with

collective �ltering. These components correspond to a group of agents with the same interest or
with the same taste in information selection. The joint �lter can be considered as a recommendation

of the group for its members to select from the information pieces.
The �lters either can remain �xed during the functioning of the network or they can dynamically

change. In the latter case the team members - depending on the information they have available
at some moment of time - change the context conditions representing the input/output selector
languages. Thus, at some moment the team of the agents can recommend new rules of information
selecting, i.e. they collaborate in determining �ltering conditions.

We should note that not only the �lters but the teams can change during the functioning of
the NLP systems: agents are allowed to migrate among the groups or they are allowed to join
more than one team. This often takes place in real life: people modify their interest or, simply, to
obtain some necessary information they join some new group of interest.

Variants of communication protocols lead to a wide variety of classi�cations of networks of
language processors. If each rewriting step is followed by a communication step, then we speak
of NLP systems with language processors communicating by command. If the rewriting at the
component continues until a previously prescribed state (a state with a request for communication)
is obtained and the communication step takes place afterwards, then we speak of networks of
language processors communicating by request.

The above general model o�ers a language theoretic framework for modelling self-organizing,
adaptive, evolving networks of (computational) agents. It is easy to see that it can be considered
as a syntactic model of social networks with collaborative �ltering of information or a syntactic
approach to distributed /cooperative text processing systems realized on networks. The model,
because of its general set-up, captures and can be extended to capture features of several extensively
and intensively studied variants of networks: as a future example, the dynamic activity pattern of
restricted features of the Internet could also be modelled in this way.

NLP systems are both computational and language identifying devices. Both their compu-
tational power and computational complexity and their language theoretic properties, including
descriptive and size complexity, are of interest. (Languages can be associated with networks of lan-
guage processors in various manners: for example, we distinguish a master component and take, as
the corresponding language, any string that appears at this component during the computation.)
In addition, since during their functioning NLP systems determine dynamically changing string
multitudes, complexities concerning spatiotemporal dynamics of the emerging string collections are
of particular interest. Studying, for example, the occurrence of waves or overloaded situations at
the nodes, in the case of string multitudes of networks of language processors can lead to a deeper
insight into the nature of distributed and parallel symbol processing and can help in understanding
and modelling emerging phenomena in the case of networks like Internet.

3 A formal model

To illustrate the informal framework, we present the formal de�nition of a variant, called a network

of parallel language processors with teams with collective �ltering (a TNLP�F0L system, for short).
The notion was formulated by some modi�cations of the notion of a network of parallel language
processors ([6]).

In this case the language processors at the components are F0L systems, so-called interaction-
less Lindenmayer systems with a �nite set of axioms, which are, roughly speaking, context-free
grammars with a totally parallel way of derivation. (Originally, these systems were introduced for
modelling developmental systems in terms of formal grammars, motivated by theoretical biology.
The reader can �nd detailed information on Lindenmayer systems in [9].)

We assume that the reader is familiar with the basics of formal language theory. We list here
only some notions which are necessary to follow the ideas of the formal contructions; for more
details confer to [9].

For an alphabet V; V + denotes the set of all nonempty strings (words) over V: The empty
string is denoted by �; V � stands for V + [f�g: A language L is a subset of V �:

An F0L system is a triple H = (V; P; F); where V is an alphabet, F � V �; is a �nite set of
axioms, and P is a �nite set of productions (rules) of the form a ! v; where a 2 V and v 2 V �:

Moreover, production set P is complete: for every a 2 V there is a rule of the form a! v; v 2 V �

in P: If F consists of exactly one string, then we speak of an 0L system. The direct derivation
relation in an F0L system H = (V; P; F) is de�ned as follows: for x; y 2 V � we write x =)P y if
x = a1 . . . an; y = z1z2 . . . zn; ai 2 V; zi 2 V �; 1 � i � n; and ai ! zi 2 P:

In the following we de�ne the network of parallel language processors with teams with collective

�ltering. We use some simpli�cations with respect to the general model: the number of the
components, the rewriting rule sets of the language processors, the �lters and the teams remain
unchanged during the functioning of the system, the processors work in synchronized manner and
the components check the strings to be communicated by using context conditions. Moreover, each
agent is member of exactly one team.

De�nition 3.1

A network of parallel language processors with teams with collective �ltering of degree n; n � 1,
(a TNLP�F0L system, for short) is a construct

� = (V; (�1; �1; t1); . . . ; (�n; �n; tn); R);

where

� V is an alphabet (the alphabet of the system),

� �i and �i; 1 � i � n; are context conditions over V � (computable mappings from V � to
ftrue; falseg), called the exit �lter and the entrance �lter recommended by the i-th team to
the members of the team, respectively,

� ti = (ci;1; . . . ; ci;ri); 1 � i � n; ri � 1; called a team of components of the system (the i-th
team), where

� ci;j = (Pi;j ; Fi;j); 1 � i � n; 1 � j � ri; called a component of the network, the (i; j)-th
component, where

� Pi;j is a �nite set of F0L rules over V; the production set of the (i; j)-th component and

� Fi;j � V � is a �nite set, the set of axioms of the (i; j)-th component, 1 � i � n; 1 � j � ri;

� R � ���; where � = fc1;1; . . . ; c1;r1 ; . . . ; cn;1; . . . ; cn;rng; called the neighbourhood relation
of the components of �:

The components represent agents, which by using their sets of rewriting rules can update the
textual information they have. Moreover, they form groups (teams), members of which have the
same �ltering conditions for selecting the information to be communicated and received.

The TNLP system is functioning by changing its states.

By a state of a TNLP�F0L system � = (V; t1; . . . ; tn; R); n � 1; we mean a tuple
s = (L1;1; . . . ; L1;r1 ; . . . ; Ln;1; . . . ; Ln;rn); where Li;j � V �; 1 � i � n; 1 � j � ri:

Lij is called the state of the (i; j)-th component and it represents the set of strings which are
present at component (i; j) at that moment.

s0 = (F1;1; . . . ; F1;r1 ; . . . ; Fn;1; . . . ; Fn;rn) is said to be the initial state of the system.

A state can change either by a rewriting step or by a communication step. When a rewriting
step takes place, then every component derives from each available string a new one, by applying
its productions in the F0L manner. Thus, in this case the number of strings available at the
components does not change: each agent has the same number of strings as it had before the
rewriting step.

At a communication step, each component (i; j) receives a copy of all strings that are present
at some of its neighbourhood components, say, component (k; l) and are able to pass the exit �lter
of component (k; l) - this is the exit �lter recommended to use by team k - and the entrance �lter
of component (i; j) - the entrance �lter recommended by team i for receiving messages. (These
strings satisfy context conditions �k and �i):

De�nition 3.2

Let � = (V; t1; . . . ; tn; R); n � 1; be a TNLP�F0L system.
Let s1 = (L1;1; . . . ; L1;r1 ; . . . ; Ln;1; . . . ; Ln;rn); and s2 = (L0

1;1; . . . ; L
0

1;r1 ; . . . ; L
0

n;1; . . . ; L
0

n;rn
) be

two states of �: We say that

� s1 directly changes for s2 by a rewriting step, written as

(L1;1; . . . ; L1;r1 ; . . . ; Ln;1; . . . ; Ln;rn) =) (L0

1;1; . . . ; L
0

1;r1 ; . . . ; L
0

n;1; . . . ; L
0

n;rn
)

if L0

i;j is the set of words obtained by performing a derivation step on each element of Li;j

by production set Pi;j in the F0L manner, 1 � i � n; 1 � j � ri;

� s1 directly changes for s2 by a communication step in �, written as

(L1;1; . . . ; L1;r1 ; . . . ; Ln;1; . . . ; Ln;rn) ` (L0

1;1; . . . ; L
0

1;r1 ; . . . ; L
0

n;1; . . . ; L
0

n;rn
)

if for every i; 1 � i � n; and j; 1 � j � ri;

L0

i;j = Li;j [fv j v 2 Lk;l; �k(v) = true and �i(v) = true; 1 � k � n; 1 � l � rk ; (k; l) 6=
(i; j); (ci;j ; ck;l) 2 Rg:

Notice that according to the above de�nition an agent in team i is allowed to receive messages
from another agent of the same team.

A sequence of subsequent states determines a computation in �:

Let � = (V; t1; . . . ; tn; R); n � 1; be a TNLP�F0L system. By a computation C in � we mean
a sequence of states s0; s1; . . . ; where

� si =) si+1 if i = 2j; j � 0; and

� si ` si+1 if i = 2j + 1; j � 0:

Let � = (V; t1; . . . ; tn; R); be a TNLP�F0L system.

The language L(�) determined by � is

L(�) = fw 2 L
(s)
1 j (F1;1; . . . ; Fn;rn) = (L

(0)
1;1; . . . ; L

(0)
n;rn) =) (L

(1)
1;1; . . . ; L

(1)
n;rn) ` (L

(2)
1;1; . . . ; L

(2)
n;rn)

=) . . . =) (L
(s)
1;1; . . . ; L

(s)
n;rn); s � 1g:

4 On the power of TNLP systems

Networks of language processors are language determining (computational) devices, therefore the
question how large language classes (how complicated string communities) can be computed by
their particular variants is one of the most important questions. Especially interesting are those
NLP systems which are of considerable computational power and at the same time with extremely
simple presentation. Simplicity in this case means, among other things, restricted size parameters
of the network (a small number of components), poor power of the language theoretic operation
represented by the language processor (restricted capabilities of the agents), homogenity of the
components, simple communication protocol and simple (regular, subregular) �lter languages.

Networks of language processors with F0L systems as components and with �lter languages
de�ned by regular context conditions form a computational device equally powerful to the Turing
machine ([6]). (To pass a regular �lter, the string have to be an element of the regular language
identifying the �lter.) Morevover, it can be shown that in the case of regular �lters a bounded
number of components is su�cient to reach computational completeness. The same results can be
derived for TNLP systems. Thus, TNLP systems with parallel language processors even with very
simple presentation and with relatively simple �ltering are able to process very complicated string
collections.

Classes of languages determined by several kinds of networks of language processors based on
di�erent language theoretic operations have been studied in detail: it was shown, for example,
that networks of language processors with regular �lters and with context-free grammars as lan-
guage processors or with language processors based on language theoretic operations simulating
the recombinant behaviour of DNA strands or with operations corresponding to point mutations
(splicing, cutting and recombination, insertion, deletion, replacement, etc.) provide universal com-
puting devices. (For an overview on the area the interested reader is referred to [2].)

5 String collections of TNLP systems

Networks of language processors are devices not only for describing the dynamics of languages at the
components but they also provide tools for characterizing multisets of strings. Properties of these
string collections are of particular importance in those cases when not only the information piece
itself (for example, the arriving message), but the number of its available copies is of interest. Since
the notions related to these networks of string multiset processors (NMP systems) are isomorphic
to the notions concerning NLP systems, we omit the explicit de�nitions. We only note that in this
case the computing devices located at the components operate on such collections of strings where
the strings are allowed to have multiple (a �nite number of) occurrences of the same copy.

In [6] it was shown that the growth of the number of strings present during the computation
at the components of an NMP system which has random context �lters and deterministic F0L
systems as components can be described by the growth function of a D0L system. (A D0L system
is an 0L system with exactly one production for each letter a of the alphabet at the left-hand side.
A random context �lter checks the string according to the presence/absence of some symbols. The
growth function of a D0L system orders to each natural number n the length of the word generated
by the system at the n-th step of the derivation.)

The proof is based on the following simple considerations: since D0L systems de�ne homo-
morphisms, therefore if we know how many strings with a �xed alphabet are present at some
component, then we are able to give the number of strings with the same alphabet obtained after
performing a rewriting step at the component. Moreover, because at communication steps we check
the presence/absence of some symbols in the strings, we are able to decide whether a string with a
�xed alphabet can pass a �lter or not. Thus, at any state of the computation we can represent the
multiset of strings at some component by the multiset of their alphabets, and, we can construct a
D0L system such that the multiset of the letters of the word of the D0L system at step t is equal
to the multiset of the alphabets of the strings present at some component (at the components) at
a corresponding step of computation in the network.

Using this proof technique, the same result can be given in the case of TNMP systems with
deterministic F0L components and random context �lters. Moreover, we note that not only the
growth of the whole string community, but also the growth of the number of strings at the individual

components and teams can be calculated. By the theory of D0L growth functions we can derive
several interesting properties of the emerging string collections at the TNMP systems. We know, for
example, that the growth of the string population (at some team or at some individual component)
is either polynomially bounded or exponential and this is a decidable property.

6 Final remarks

In this paper we briey discussed a general framework which provides language theoretic approach
for describing the behaviour of agents and agent communities which use networks for cooperation
and communication. We hope that the theoretical model can help in developing tools for designing
languages supporting collaborative text processing via networks.

References

[1] Communication of the ACM, March 1997, Vol. 40., No. 3. Special issue: Recommender Systems.

Linking users by similar interest.

[2] E. Csuhaj-Varj�u, Networks of Language Processors. EATCS Bulletin, 63 (1997), 120-134.

[3] E. Csuhaj-Varj�u, J. Dassow, J. Kelemen and Gh. P�aun, Grammar Systems: a Grammatical

Approach to Distribution and Cooperation. Gordon and Breach Science Publisher, London, 1994.

[4] E. Csuhaj-Varj�u, L. Kari and Gh. P�aun, Test Tube Distributed Systems Based on Splicing.

Computers and Artif. Intelligence 15(2-3) (1996), 211-232.

[5] E. Csuhaj-Varj�u, J. Kelemen and Gh. P�aun, Grammar Systems with WAVE-like Communication.

Computers and Artif. Intelligence 15 (5) (1996), 419-436.

[6] E. Csuhaj-Varj�u and A. Salomaa, Networks of Parallel Language Processors. In: New Trends

in Formal Languages. Control, Cooperation and Combinatorics, (Gh. P�aun, A. Salomaa, eds.),

LNCS 1218, Springer Verlag, Berlin-Heidelberg-New York, 1997, 299-318.

[7] L. Errico and C. Jesshope, Towards a new architecture for symbolic processing. In: Proc. Conf.

Arti�cial Intelligence and Information-Control Systems of Robots' 94, (I. Plander, ed.), World

Scienti�c, Singapore, 1994, 31-40.

[8] S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for AI: NETL,

THISTLE and Boltzmann machines. In: Proc. AAAI- Natl. Conf. on AI., William Kaufman, Los

Altos, 1983, 109-113.

[9] Handbook of Formal Languages. Vol. I-II-III. (G. Rozenberg, A. Salomaa, eds.), Springer Verlag,

Berlin-Heidelberg-New York, 1997.

[10] C. Hewitt, Viewing Control Structures as Patterns of Passing Messages. J. of Arti�cial Intelligence

8 (1977), 323-364.

[11] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.

