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1 Introduction

Similarity search in multimedia databases is typically performed on abstractions of mul-
timedia objects, also called the features, rather than on the objects themselves. Though
the feature extraction process is application speci�c, the resulting features are most often
considered as points in high-dimensional vector spaces (e.g. the color indexing method of
Stricker and Orengo [SO95]). Similarity (or dissimilarity) is then determined in terms of
the distance between two feature vectors.

In order to manage similarity search retrieval in large object bases, several storage struc-
tures have been designed. However, most of the practical applications reported have
observed the dimensional curse, i.e. the rapid performance deterioration with the increas-
ing space dimensionality.

In this article, we elaborate on the performance issue of the similarity searches in high
dimensional data spaces. Unless explicitly stated, the following assumptions are respected:
(1) objects are described by feature vectors in a d-dimensional vector space, (2) the
similarity is measured as the Euclidean distance, (3) there is no correlation between data

�This research has been funded by the EC ESPRIT Long Term Research program, project no. 9141,
HERMES (Foundations of High Performance Multimedia Information Management Systems). The work
of Pavel Zezula has also been supported by Grants GACR No. 102/96/0986, Object-oriented data model,
and KONTAKT No. PM96 S028, Parallel text bases. The work of Roger Weber has been funded by the
Swiss Bundesamt f�ur Bildung und Wissenschaft (BBW, grant no. 93.0135).

yOn leave from the CVIS, Technical University, �Udolni 19, Brno, Czech Republic, E-mail:
zezula@cis.vutbr.cz

1



0

20

40

60

80

100

120

0 20 40 60 80 100

pe
rc

en
ta

ge
 o

f v
is

ite
d 

le
af

 p
ag

es

d

N=250000

0

20

40

60

80

100

120

0 50000 100000 150000 200000 250000

pe
rc

en
ta

ge
 o

f v
is

ite
d 

le
af

 p
ag

es

N

d=2
d=4
d=8

d=10

Figure 1: Nearest Neighbor search in R*-Trees

on di�erent levels, and (4) the feature vectors are uniformly distributed in the data space
D = [0; 1]d.

Given these assumptions, we start with some experiments with R-Tree-like methods [Gut84,
BKSS90, BAK96] to con�rm the fact, that they completely fail, if the dimensionality goes
beyond a small number, say 16.

To better understand why these methods fail, we investigate the nearest neighbor search
from a theoretical point of view. Then, recent proposals, based on di�erent partitioning
principles, are considered and their performance characteristics investigated with respect
to the feature vector dimensionality.

2 The dimensional curse for the R-Tree structures

This section presents some experiments with the R*-Tree [BKSS90], followed by theoret-
ical studies on the nearest neighbor search performance, in general.

2.1 Experiments with R*-Tree

The R*-Tree [BKSS90] is an improved access method of the R-Tree [Gut84]. Both methods
partition the data space recursively and store information about the partitions in the
nodes. The partitions are described by the minimal bounding box, which covers all objects
within the partition. The R-Tree typically consists of a small number of levels (< 10) and
a high �ll grade of the leaf nodes (> 70%). A provable optimal nearest neighbor search
algorithm has been de�ned by Hjaltson and Samet [HS95] and proved by Berchtold et
al. [BBAK97]. It visits the partitions according to their minimal distance to the query
point. As soon as a vector has been found, that lies nearer to the query point than all
remaining partitions, the nearest neighbor has been found. Generally, the algorithm stops
after having found k points|the k nearest vectors to the query. To measure the quality
of an access method, one typically counts the number of visited pages. Given the tree
structure of the R*-Tree, we assume, that all but the leaf nodes are cached in memory.
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Figure 2: Expected nearest neighbor distance

Therefore, we only measure the number of visited leaf nodes.

Figure 1 shows the number of visited leaf nodes of an R*-Tree for an uniformly distributed
data set within the vector space D = [0; 1]d, whereas d is the dimension of the space and
N is the number of points in the database. The page size for all trees was 8K. One quickly
observes, that nearest neighbor search in R*-Tree is hopeless as soon as the dimensionality
goes above 10, because all leaf nodes must be visited. Consequently, a simple scan through
the vectors would perform better than a search with the R*-Tree.

2.2 Theoretical Studies of the Nearest Neighbor Problem

Similar to [BBAK97], we �rst computed the expected nearest neighbor distance in high-
dimensional vector spaces (see Figure 2). As expected, the distance grows as dimension-
ality gets larger and shrinks if more points are used.

Then, we computed the number of leaf pages intersecting the query sphere, that is the
sphere around the query point with the radius equal to the nearest neighbor distance (see
Figure 2). For this purpose, we have to determine the Minkowski sum of the query sphere
and the bounding box of the leaf pages. Instead of evaluating the closed formula given
in [BBAK97], we focused on the size of the bounding boxes at the leaf nodes. We found
out, that the concept of Minkowski sum transforms the leaf pages in enlarged objects,
which cover the entire data space. In other words, each of the leaf nodes intersects the
query sphere and therefore has to be visited during a nearest neighbor search 1. To
verify this statement, we examined the leaf nodes of R*-Trees and computed the maximal
distance of their bounding boxes to any point in the data space. The results together
with the expected nearest neighbor distance are shown in Figure 3. The fact, that the
maximum distance to any point in the data space is smaller than the expected nearest
neighbor distance proves, that the enlarged leaf page incorporates the entire data space.
Consequently, all leaf nodes of the R*-Tree must be visited during a nearest neighbor
search and the search degrades to a linear problem. Further experiments have shown,
that this holds true for every tree-like structure, which uses hyper cubes as bounding

1The prove for this and the following statements is subject of a future paper
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Figure 3: Nearest neighbor distance compared to the maximal distance to leaf nodes; on
the left for d = 10 and on the right for d = 40

boxes.

In literature, it is commonly accepted that the X-Tree [BKSS90] is the most e�cient
tree structure for nearest neighbor search in high-dimensional vector spaces. Figure 1 and
several experiments [BKSS90, BBAK97, BBB+97] show, that the X-tree is better than the
R*-Tree, but can not get rid of the dimensional curse too. As long as the dimensionality
is low (less than 16) the X-tree can e�ciently prune the search space for nearest neighbor
queries, but for vectors of higher dimensionality, the complexity of nearest neighbor search
becomes O(n), because all of the leaves must be visited.

3 New Approaches

As we have just demonstrated, the nearest neighbor problem is, for uniformly distributed
high-dimensional vector sets, linear. Furthermore, experiments have shown that a simple
scan through the database outperforms more sophisticated tree-like structures. However,
it is possible to reduce the cost of the sequential scan by using small approximations of
the vectors, which are stored in a separate, much smaller, �le. These approximations
may be used to underestimate the distance of the object to the query and to �lter out
candidates. This method works like the signature method and is called VA-File.

The second approach, the so called M-tree, enables nearest neighbor search for metric
spaces, which includes the previously discussed vector spaces. The principle di�erence
with this method is that the search space is partitioned only according to distances be-
tween objects, i.e. no coordinates of the space are used. From the performance point of
view, M-tree aims at reducing not only the I/O, but also the CPU costs.

3.1 The VA-File

Similarly to signature methods, the vector approximation �le (VA-File) proposed here
does not partition data as the R-Tree like methods do. In particular, the data space is
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Figure 4: Selectivity as a function of the databases size (left); and page selectivity as a
function of d

�rst partitioned into regions, and then these regions are used to generate bit-encoded
approximations for each vector. Contrary to the grid-�le [NHS84], no directory over these
cells is built, because the number of cells grows exponentially with dimensionality. Rather,
all approximations are stored in a sequential �le. Queries, vectors in the same data space,
are not approximated. To perform nearest neighbor search, the VA-File operates in two
phases. In the �rst phase, it applies a �lter. Based on the approximation, it computes for
each approximation the minimal and maximal bound on the distance between the query
point and the region represented by the approximation. Given that one is looking for
the k nearest vectors to the query point, one can select an approximation as a candidate
for the second phase if its minimal bound is smaller than the maximal bound of the k-
th nearest approximation. In the second phase, the candidates are visited in increasing
order of their minimal bound to determine the �nal answer set. This phase ends when
a minimal bound is found which exceeds or equals the k-th best distance in the answer
set. Our practical experiments have shown, that between 95% and 99% of the vectors
are eliminated during the �rst �ltering step, and 99.9% over all (see Figure 4, left side).
Thus, only a small number of vectors must be accessed eventually, and the total number
of I/O operations is smaller than with sequential scanning all vectors.

Figure 4 (left) shows the e�ectiveness of the two �ltering steps with vectors of 50 di-
mensions. The right side of Figure 4 proves, that the VA-File does not su�er from the
dimensional curse (the number of vectors is allways 100000). It even gets better with
growing dimensionality. Furthermore, in wall-clock experiments, the VA-File was up to
three times faster than a simple scan. The larger the database was, the better the method
performed.

3.2 The M-tree

In [PP97], a paged metric tree, called M-tree, has been designed. In order to organize and
partition the search space, this approach only considers relative distances, rather than
absolute positions, of objects in a multi-dimensional space. The M-tree is a balanced
tree, able to deal with dynamic data �les, and as such it does not require periodical reor-
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Figure 5: Selectivity as a function of the databases size (left); and page selectivity as a
function of d

ganizations. M-tree can also index objects using features compared by distance functions
which either do not �t into a vector space or do not use an Lp metric, thus considerably
extends the cases for which e�cient query processing is possible. What is only required
for this approach to work is that the function used to measure the distance, or better to
say the dissimilarity, between objects is a metric, so that the triangle inequality property
applies and can be used to prune the search space. Naturally, the M-tree can support
both the range and the k-nearest neighbor queries.

As expected, M-tree does su�er from the dimensional curse provided the data is indepen-
dent and uniformly distributed in n-dimensional space. With such �les, the 10 nearest
neighbor (NN) queries on 10-dimensional vectors already require more than 50% of both
the page reads as well as the distance computations { vectors of 20 dimensions push this
percentage up to 90%, and the search is becoming practically linear for n = 25. The
results are presented in Figure 5.

However, interesting behaviour can be observed for "clustered" feature �les { real life
�les are rarely uniform and independent, thus clusters of objects can be recognized (see
Figure 5). With only just �ve clusters, the number of necessary distance computations
has been upper bounded by about 20% of the vectors in the �le, and this was true for
any �le with dimensionalities between 20 and 200 { 200 dimensions was the maximum
dimensionality we have tried. Similar behaviour has been observed for the necessary
number of page reads.

4 Conclusions

The performance problem of similarity searches in high dimensional data spaces has been
elaborated. It has been demonstrated, both by experiments and the theoretical analysis,
that the tree oriented search structures used for similarity retrieval signi�cantly su�er from
the dimensionality curse, provided the vectors are independent and uniformly distribute.
Since, in such situation, the performance complexity seems to be linear, the sequential
search on the vector �le, or, better, on its approximation, such as the VA-�le, seems to
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be the best solution.

However, as soon as the feature vectors start to form clusters, the performance of tree-
based structures can signi�cantly improve. At least such behaviour has been observed for
the M-tree.
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