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Abstract. We present a model for image retrieval in which images
are represented both at the form level, as sets of physical features of
the representing objects, and at the content level, as sets of logical
assertions about the represented entities as well as about facts of the
subject matter that are deemed as relevant for retrieval. A uniform and
powerful query language allows queries to be issued that transparently
combine features pertaining to form and content. Queries are expressions
of a fuzzy logical language. While that part of the query that pertains to
(medium-independent) content is “directly” processed by an inferential
engine, that part that pertains to (medium-dependent) form is entrusted
to specialised signal processing procedures linked to the logical language
by a procedural attachment mechanism.

1 Introduction

Due to the pervasive role of images in nowadays information systems, a vast
amount of research has been carried out in the last few years on methods for
retrieving images by content from large repositories. This research has produced
many theoretical results, on top of which a first generation of image retrieval
systems (IRSs, for short) have been built [7] and, in some cases, even turned
into commercial products [2, 5]. The distinguishing feature of these systems,
and of the related research prototypes, is their total disregard for a proper
representation and use of image semantics.

This study addresses the problem of injecting semantics into image retrieval
by presenting an image retrieval model in which images are represented both at
the form level, as sets of physical features of the objects representing a slice of
the world, and at the content level, as sets of properties of the real-world objects
being represented. This model is logic-based, in the sense that the representation
of image content is based on a description logic. Features of images pertaining
to form are not represented explicitly in the description logic, as they are best
dealt with outside it, i.e. by means of some digital signal processing technique.
However, they impact on logical reasoning through a mechanism of “procedural
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attachments” [1], which implements the connection between (logical) reasoning
about content and (non-logical) reasoning about form, thus allowing a unified
query language capable of addressing both dimensions.

The resulting retrieval capability thus extends that of current IRSs with the
use of semantic information processing and reasoning about image content. So
far, the only attempts in this direction had been based on textual annotations
to images (“captions”: see e.g. [13]) or their regions, in some cases supported by
the use of thesauri to semantically connect the terms occurring in the text [8].
These models permit the expression of image contents, but are weak in exploiting
them, due to the well-known limitations of keyword-based text retrieval [14].

2 Representing image form

Let IN be the set of natural numbers. A region is any subset of IN2, i.e. a set
of points. A region S is aligned if min{x | (x, y) ∈ S} = 0 and min{y | (x, y) ∈
S} = 0. We assume familiarity with the basic notions of digital geometry, such
as neighborhood and connectedness (for details, see e.g. [11, Chapter 11]). A
connected set with no “holes” is called simply connected.

Given a set of colours C, a layout is a triple i = 〈Ai, πi, f i〉, where Ai, the
domain, is a finite, aligned, rectangular region; πi is a partition of Ai into non-
empty connected regions {T1, ..., Tn}, called atomic regions; f i is a total function
from πi to C, assigning a colour to each atomic region (and therefore called the
colour function) such that no two neighbour atomic regions have the same colour;
formally:

∀T, T ′ ∈ πi, if T is a neighbour of T ′ then f i(T ) 6= f i(T ′)

For notational convenience, we make explicit some of the information carried by
a layout: given the layout i = 〈Ai, πi, f i〉,
– the extended regions πi

e of i are defined as

πi
e = {S | ∃T1, ..., Tk ∈ πi, k ≥ 1, S = ∪k

i=1Ti, S connected}
The fact that we do not require S to be simply connected allows some
interesting visual objects (e.g. the figure of a goalkeeper partly covered by
an approaching ball) to be classified as extended regions;

– the extended colour function f i
e of a layout i is defined as the function that

assigns to each extended region S a colour distribution f i
e(S) (i.e. a mapping

from C to [0,1] such that
∑

{c∈C} f i
e(S)(c) = 1) as follows: ∀c ∈ C, ∀S ∈ πi

e

such that S = ∪k
j=1Tj and each Tj is an atomic region:

f i
e(S)(c) =

∑
Tj∈Z |Tj |

|S|
where Z is the set containing all and only the atomic regions Tj in {T1, . . . , Tk}
that have colour c, i.e. f i(Tj) = c, and |S| refers to the cardinality of a region
S viewed as a set of points.



In general, a region S is not bound to a particular layout. This binding is realized
in the notion of grounded region, which we define as a pair 〈i, S〉, where i =
〈Ai, πi, f i〉 is a layout and S ∈ πi

e.
Let [k] denote the set of the first k natural numbers. Given m, n ∈ IN, the

image space M(m, n) is given by the set of all possible layouts of domain [m]×[n].
The image universe U = ∪(i,j)∈IN2M(i, j) is the union of all possible image
spaces.

3 Representing image contents

We take the content of an image to be a scene, i.e. a set of possible situations
indistinguishable from the visual point of view. The formalism we have chosen
for representing and reasoning on image contents is a Description Logic (DL),
namely the logic is ALC [12], a significant representative of the DLs family;
however, our model is not tied in any way to this particular choice, and any
other DL would easily fit in it. The language of ALC includes unary and binary
predicate symbols, called primitive concepts (indicated by the metavariable A
with optional subscripts) and primitive roles (metavariable R), respectively.
These are the basic constituents by means of which concepts (i.e. “non-primitive
predicate symbols”) are built via concept constructors, according to the following
syntactic rule:

C −→ A | C1 u C2 | ¬C | ∀R.C

A crisp assertion is an expression having one of the following forms:

– C(a), where a is an individual and C is a concept, means that a is an instance
of C; for example, (Musician u Teacher)(tim) makes the individual tim
a Person and a Teacher;

– R(a1, a2), where a1 and a2 are individuals and R is a role, means that a1 is
related to a2 by means of R (e.g. Friend(tim,tom));

– T v T ′, where T and T ′ are both concepts or both roles, means that T is a
specialization of T ′ (e.g. PianoPlayer v (Musician u (∃Plays.Keyboard))).

The first two kinds of assertions are called simple assertions, while any instance
of the last kind is said to be an axiom. In order to deal with the uncertainty
inherent in similarity-based retrieval, we introduce in the logic fuzzy assertions
(see e.g. [4]), i.e. expressions of the form 〈α, n〉 where α is a crisp assertion and
n ∈ [0, 1], meaning that α is true “to degree n”. We will use the terms fuzzy
simple assertion and fuzzy axiom, with the obvious meaning.

The semantics of the resulting logic relies on fuzzy interpretations, i.e. pairs
I = (∆I , (·)I) where ∆I is a non-empty set (called the domain of discourse)
including the image universe U , and (·)I , the interpretation function, maps each
concept into a function from ∆I to [0, 1], and each role into a function from
∆I × ∆I to [0, 1], so that for all d ∈ ∆I the following conditions are satisfied:



(C1 u C2)
I(d) = min{C1

I(d), C2
I(d)}

(¬C)I(d) = 1 − CI(d)
(∀R.C)I(d) = mind′∈∆I {max{1 − RI(d, d′), CI(d′)}}

A fuzzy interpretation I is a model of an assertion 〈C(a), n〉 (〈R(a1, a2), n〉,
〈T v T ′, n〉, respectively) iff CI(aI) ≥ n (resp. RI(a1

I , a2
I) ≥ n; for all d ∈

∆I , T ′I(d) ≥ n · T I(d)), and is a model of a set of fuzzy assertions iff I is a
model of all the assertions in the set. A set of fuzzy assertions Σ entails a fuzzy
assertion 〈α, n〉 (written Σ |=f 〈α, n〉) iff all models of Σ are models of 〈α, n〉.
Given Σ and a crisp assertion β, we define the maximal degree of truth of β w.r.t.
Σ (written Maxdeg(Σ, β)) to be n ≥ 0 iff Σ |=f 〈β, n〉 and there is no m > n
such that Σ |=f 〈β, m〉.

Having settled for the tool, we now specify its use for image content representation.
Let i be a layout uniquely identified, in a way to be made precise later, by the
individual i. A content description δ for i is a set of fuzzy assertions, consisting
of the union of four component subsets:

1. the image identification, a set containing only a single fuzzy assertion of the
form 〈Ego(i), 1〉, whose role is to associate, along with the layout naming
function nl (see Section 6), a content description with the layout it refers to.
In particular, in what follows σ(i) will denote the set of the (possibly many)
content descriptions whose identification is Ego(i);

2. the object anchoring, a set of fuzzy assertions of the form 〈Rep(r, o), n〉,
where r is an individual that uniquely identifies a grounded region of i and
o is an individual that identifies the object depicted by the region;

3. the scene anchoring, a set of fuzzy assertions of the form 〈About(i, o), n〉,
where i and o are as above. By using these assertions, an indexer can state
what the whole scene shown in the image is about, and this would typically
be a situation of which the image shows some salient aspect;

4. the scene description, a set of fuzzy simple assertions (where neither the
predicates Ego, Rep and About, nor identifiers pertaining to layout such as
the i’s and r’s above, occur), describing important facts shown in the image
about the individuals identified by assertions of the previous two kinds.

While the task of components 1 to 3 is that of binding the form and content
dimension of the same image, component 4 pertains to the content dimension
only. Note that there may be more than one content description for the same
image i; this is meant to reflect the fact that there may be multiple viewpoints
under which an image may be considered.

Any of components 2 to 4 can be missing in a content description. As an
example, let us consider a photograph showing a singer, Mary, performing as
Zerlina in Mozart’s “Don Giovanni”. Part of a plausible content description for
this image, named i, could be (for simplicity, in this example we only use crisp
assertions):

{Ego(i),About(i,o),Rep(r,mary),DonGiovanni(o),Plays(mary,zerlina)}



4 Querying layouts

A query addressed to an image base can refer either to the form dimension,
in which case we call it a visual query, or to the content dimension, in which
case we call it a conceptual query. These two categories are exhaustive but not
disjoint. Visual queries can be partitioned in: concrete visual queries: these
consist of images themselves that are submitted to the system as a way to
indicate a request to retrieve “similar” images; and abstract visual queries: these
are abstractions of layouts that address specific aspects of image similarity via
artificially constructed image elements and can be further categorised into:

1. colour queries: colour distributions that are used to retrieve images with a
similar colour distribution;

2. shape queries: specifications of one or more shapes (closed simple curves in
the 2D space) and possibly of their spatial relationships, used to retrieve
images in which the specified shapes occur as contours of significant objects,
in the specified relationships;

and other categories, such as spatial and texture queries [6], which will not be
dealt with in this paper.

In order to query layouts, the following SPSs are introduced:

– symbols for global matching: in general, there will be a set of such symbols,
each capturing a specific similarity criterion. Since from the conceptual
viewpoint these symbols form a uniform class, we will just include one of
them in our language, to be understood as the representative of the whole
class. Any other symbol of the same sort can be added without altering the
structure and philosophy of the language. So, for global matching we use the
SPS

• SI(i,j) (standing for Similar Image): assesses the similarity between
two layouts i and j;

– symbols for local matching: these come in two sorts. First we have selectors,
which are SPSs needed to select the entity to match from a layout:

• HAR(i,r) (Has Atomic Region): a selector relating the image i to any
of its grounded atomic regions r;

• HR(i,r) (Has Region): relates i to any of its grounded regions r;
• HC(r,c) (Has Colour): relates the grounded region r to its colour c;
• HS(r,s) (Has Shape): relates the grounded region r to its shape s.

Second, we have symbols for local matching, assessing similarity between
local entities. Similarly for what it has been done for global matching, we
include one symbol for each category of entities to be matched; so we have:

• SC(c,c’) (Similar Colour): returns the similarity between colour distributions
c and c’;

• SS(s,t) (Similar Shape): gives the similarity between shapes s and t.



The semantics of the symbols introduced so far is fixed, and is given by the
functions that capture the intended meaning of each symbol, as illustrated above.
For example, if I is any fuzzy interpretation:

SII : U × U → [0, 1], assigning to each pair of layouts their degree of similarity.

A fuzzy interpretation I is said to be an image interpretation if and only if it
assigns the correct semantics to the SPSs. From now on, we will use the term
“interpretation” as short for “image interpretation”.

5 The query language

Below, we present the query language of our model (cpt abbreviates concept).

〈image-q〉 ::= 〈image-cpt〉 | 〈image-q〉 u 〈image-q〉 | 〈image-q〉 t 〈image-q〉
〈image-cpt〉 ::= ∃SI.{〈layout-name〉} | ∃About.〈content-cpt〉 |

∃HAR.〈region-cpt〉 | ∃HR.〈bound-region-cpt〉
〈region-cpt〉 ::= ∃HC.〈colour-cpt〉 | ∃HS.〈shape-cpt〉 | ∃Rep.〈content-cpt〉 |

〈region-cpt〉 u 〈region-cpt〉 | 〈region-cpt〉 t 〈region-cpt〉
〈bound-region-cpt〉 ::= ∃Rep.〈content-cpt〉 | 〈bound-region-cpt〉 u 〈region-cpt〉 |

〈bound-region-cpt〉 t 〈region-cpt〉
〈colour-cpt〉 ::= {〈colour-name〉} | ∃SC.{〈colour-name〉}
〈shape-name〉 ::= {〈shape-name〉} | ∃SS.{〈shape-name〉}
Note that a layout-name, a colour-name and a shape-name are not concepts,
but individuals. Queries are thus not concepts of ALC, but of the DL ALCO,
which extends ALC with the “singleton” {} operator, which given an individual
i returns a concept {i}. The singleton operator is necessary in queries because
it allows the reference to specific individuals. However, this added expressive
power has no impact on the complexity of the image retrieval problem.

Let us reconsider the example introduced in Section 3. The images about Don
Giovanni are retrieved by the query ∃About.DonGiovanni. Those showing the
singer Mary are described by ∃HR.∃Rep.{mary}. Turning to visual queries, the
request to retrieve the images similar to a given one, named this, is expressed
by ∃SI.{this}, and can be easily combined with any conceptual query, e.g.
yielding ∃SI.{this} t ∃About.DonGiovanni, which would retrieve the images
that are either similar to the given one or are about Don Giovanni. As far as
local visual queries are concerned, the images in which there is a blue region
whose contour has a shape similar to a given curve s are denoted by the query
∃HAR.(∃HC.{blue} u (∃HS.∃SS.{s})). Finally, the user interested in retrieving
the images in which Mary plays Zerlina and wears a bluish dress, can use the
query ∃HR.∃Rep.({mary}u∃Plays.{zerlina})u(∃HC.∃SC.{blue}).

6 Image bases and image retrieval

We define an image base as a 5-tuple IB = 〈L, nl, nr, ΣC , ΣD〉 where: (a) L is a
finite set of layouts; (b) nl is an injective layout naming function, mapping each



layout i in L into an individual i, which therefore acts as a unique name for it.
Note that, indirectly, nl also associates i with the set of descriptions σ(nl(i)) =
{δ1, . . . , δn}, whose elements are the content descriptions of the image whose
layout is i; (c) nr is an injective region naming function, mapping each grounded
region 〈i, S〉 of each layout i in L into an individual r, which therefore acts as a
unique name for it; (d) ΣC is a finite set of content descriptions, such that each
layout in L has at least one associated description (i.e. ∀i ∈ L, |σ(nl(i))| ≥ 1).
“Uninterpreted” images will have a single content description containing just
the image identification; (e) ΣD is a set of fuzzy assertions representing domain
knowledge.

Our image retrieval model is based on the idea that, in response to a query
Q addressed to an image base IB = 〈L, nl, nr, ΣC , ΣD〉, the layout named i is
attributed a degree of relevance n iff:

n = max{δj∈σ(i)}{nj = Maxdeg(δj ∪ ΣD, Q(i))}
Let us consider an image base containing two layouts i and j, such that:

{〈Ego(i), 1〉, 〈About(i, o), 0.8〉, 〈DonGiovanni(o), 1〉}
{〈Ego(j), 1〉, 〈About(j, o), 0.7〉, 〈WestSideStory(o), 1〉}

are in ΣI . Moreover, ΣC contains the following axioms:

〈DonGiovanni v EuropeanOpera, 1〉 〈WestSideStory v AmericanOpera, 1〉
〈EuropeanOpera v Opera u (∃ConductedBy.European), 0.9〉
〈AmericanOpera v Opera u (∃ConductedBy.European), 0.8〉

Suppose we are interested in those images that are about an opera conducted
by a European director. To this end, we can use the query ∃About.(Opera u
∃ConductedBy.European). It can be verified that the degree of relevance attributed
to i is 0.8, whereas that of j is 0.7.

We close with some implementation considerations. In order to effectively
perform image retrieval as prescribed by the model defined so far, we envisage
an IRS consisting of the following components: (1) a global matching engine for
each global similarity predicate, responsible of implementing a specific kind of
image global matching; to this end, each such engine will make use of the feature
vectors for the layouts in the image base, stored in an apposite database, the
global matching database; (2) a local matching engine for each local similarity
predicate, using the feature vectors stored in local matching databases, of which
there exists one for each considered image feature (colour, shape, etc.); (3)
a DL theorem prover, which will handle the semantic information processing,
collecting the assertions contained in the ΣC and ΣD components of the image
base and appropriately using them in reasoning about image content; (4) a
query processor, responsible of decomposing each query into abstract, concrete,
and conceptual sub-queries, demanding the evaluation of each sub-query to the
appropriate component, and then properly combining the results in order to
obtain the final ranked list of images. For its operation, the query processor
uses a database, called the image structure database, which stores the semantics



of selectors as well as naming functions. The details of these components are
outside the scope of this paper. We only remark, at this point, that they are
well within reach of the current technology. In particular, we have developed a
theorem prover for a significant extension of the DL we use here [10].

7 Conclusions

We have presented an image data model providing a retrieval capability encompassing
current similarity-based techniques and, in addition, making full and proper use
of image semantics. Because the representations handled by the model have a
clean semantics, further extensions to the model are possible. For instance, image
retrieval by spatial similarity can be added to our model with moderate effort: at
the form level, effective spatial similarity algorithms (e.g. [6]) can be embedded
in the model via procedural attachment, while significant spatial relationships
can be included in content descriptions by drawing from the many formalisms
developed within the qualitative spatial reasoning research community [3]. Analogously,
the model can be enhanced with the treatment of texture-based similarity retrieval.
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