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Abstract

This article addresses the issue of retrieving images from large astonomical archives. It presents a
method to de�ne indexing features describing speci�c characteristics of the information contained in
the image. Indexing features allow to compute a \degree of similarity" between images. In the method
presented here, indexing features are derived from image icons. The latter represent symbolically the
image content and are mainly used for browsing. The transition from icons to indexing features is
done using a self-organizing map (SOM). In image retrieval systems, SOM-generated indexing features
allow to reach high levels of retrieval precision. This is illustrated with ASPECT, a system managing
the Zurich archive of solar radio spectrograms. For speci�c queries and for recalls less than 10%, a
precision above 50% have been reached. It represents about 20% increase compared with a retrieval
system based on global indexing features.

1 Overview

The e�ciency and e�ectiveness of a retrieval system for large image archives relies on two main actions:

{ Browsing through a large number of images allows to visualize roughly but quickly the contents
of the archived images. To be quick, browsing uses lossy compressed versions of the images or
symbolic image descriptions like image icons (Csillaghy, 1994).

{ Searching for similar images allows to select the set of images to browse through. This implies
the determination of some \degree of similarity" between images. The degree of similarity
relies on indexing features that describe speci�c characteristics of the structures contained in the
images.

Traditional methods to de�ne indexing features rely, for instance, on text association (Murtagh,
1994), color histograms (Flickner et al., 1995), low-level image properties (Gupta and Jain, 1997) or
texture description (Carson et al., 1997). To process a large number of images, the actual values of the
indexing features associated with each document must be derived automatically. The automatization is
problematic. Traditional methods are usually developed either for conventional photographic pictures
(press photographs, museum catalogues etc.) or for small collections of images. Astronomical images
archives, on the other hand, are large. Moreover, the archived images are usually noisy and mostly
contain di�use structures. Generally, the methods mentioned above cannot be applied to them.

To de�ne indexing features for astronomical images, another approach must be used. The method
presented here uses the information contained in image icons. An icon is composed of a set of boxes
describing regions of similar texture (Section 2). Boxes are analyzed with a self-organizing map
(Kohonen, 1995), which classi�es the latter by shapes and volumes. This classi�cation tells about
the type of structures contained in the image (Section 3). The utilization of SOMs and icons to
browse through and search for similar images is applied to the management of an archive of solar
radio spectrograms (Section 4) using a system called ASPECT (ASPECT, 1996). The e�ectiveness of
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the ASPECT system based on SOM-generated indexing features, is signi�cantly increased compared
with its e�ectiveness based on global indexing features (Section 5).

2 Transformation of images into icons

The method to transform image into icons have been described in details in another paper (Csillaghy,
1996). Its basic elements are recalled here.

A way to segment the image into domains with similar texture is investigated. To this end, image
pixels are represented as points in a 3-dimensional attribute space, where two dimensions are given
by the image axes and the third dimension is given by the color values of the parameterized pixels.
The attribute space is partitioned into 3-dimensional regions that can hold only up to a �xed number
of points. Due to this constraint, the regions have di�erent shapes and volumes to adapt to the
variable density of points in the attribute space. Consider the points in a given region. They deliver
information about the local data distribution, and can be used to de�ne a structure called a box. The
latter represents the part of the image with similar texture.

Each individual box can be considered as a 6-tuple. Consider the r-th box, br, of an icon. Three
values determine its position in each dimension. They are determined by the average of the points in
the associated region,

�r;i =
1

mr

mr�1X
k=0

xk;r;i (i = 1; 2; 3); (1)

Where mr is the number of points in the r-th region, xk;r;i is the value of the k-th point in the i-th
dimension and in the region r. The remaining three values determine its extension in each dimension.
They are determined by the standard deviations of the points in the associated region,

�r;i =
1

mr

vuutmr�1X
k=0

(xk;r;i � �r;i)2 (i = 1; 2; 3): (2)

Hence, the box representing the r-th region is written as

br =< �r;1; �r;2; �r;3; �r;1; �r;2; �r;3 > : (3)

The set of boxes created following the method summarized above represents an abstraction of the
full image information content. For a speci�c application, however, only a fraction of this information
is interesting. Therefore, a selection procedure is used to determine which boxes actually represent the
information wanted. The selection of boxes constitutes the image icon; it is visualized by projecting
the selected boxes into the plane of the image (see Figure 1).

Image icons are usually displayed in a browser, for example Netscape, as illustrated in Figure 2.
They occupy only a small area on screen, thus allowing to display many of them simultaneously.

3 Derivation of indexing features from icons

3.1 General considerations

Two images are compared by determining their \degree of similarity." This implies the de�nition
of meaningful indexing features which codify the main characteristics of the structures in the image.
Indexing features can be arranged in a speci�c order, thus building for each image a document descrip-
tion vector. The images most similar to a given reference image are those that have their associated
document description vector nearest to the document description vector of the reference image. The
notion of \nearest" will be further discussed in Section 3.2.

How can indexing features for astronomical images be adequately de�ned? The information con-
tained in image icons can help. Using icons as source of indexing features is attractive because the
information they contain has already been selected and abstracted:

{ Selected: The boxes building the image icons have been selected as representing interesting
information; thus, the computation of the values of indexing features is not biased by irrelevant
data. For example, background or disturbances, which are a signi�cant part of the original
images, do not inuence the computation.
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Figure 1: Comparison between an image and its associated image icon. The image shows a solar radio
spectrogram. It represents the density of the solar radio ux in the frequency-time plane. Enhanced
emission is shown bright.

{ Abstracted: The information in icons is represented by simple 6-tuples that are easy to handle.
The de�nition of indexing features is therefore relatively straightforward. Moreover, using icons
for the computation of indexing features does not require any additional access to the large-size
original documents.

Many ways can be used to de�ne indexing features from icons. A number of global indexing features
have been de�ned in another paper (Csillaghy, 1997). Furthermore, local indexing features can be
de�ned using, for instance, minimal spanning trees (Murtagh and Heck, 1987), principal component
analysis (Jolli�e, 1986) or self-organizing maps. The rest of the paper focuses on the utilization of the
latter.

3.2 Self-organizing maps for the de�nition of indexing features

3.2.1 Principles of self-organizing maps

Basically, a self-organizing map (SOM) is a two-dimensional arti�cial neural network, that is, an array
of interconnected cells. It has been described by Kohonen (1995) and is schematized in Figure 3. The
spatial location of a cell in the map corresponds to a speci�c region of the multidimensional attribute
space to be analyzed, or input space. A cell of the map reacts|that is, switches from its unactivated
state 0 to its activated state 1|when a data point of the input space \presented" to the map originates
from the corresponding region of the input space. The correspondence between regions of the input
space and cells of the map is determined during a training process.

A set of data samples are used to train the map. During training, the map has its cells i, charac-
terized by reference vectors mi that are updated after each input. The learning process is described
by:

mi(t+ 1) =

8<
:

mi(t) + �(t)[x(t) �mi(t)]
if i 2 N(t)

mi(t) otherwise,
(4)

where t is the (discrete) updating time, x(t) is the current input vector and �(t) is called the adaptation
gain, 0 < �(t) < 1. The neighborhood function N(t) determines which cells must be updated for a
given input point. Thus, the topological structure of the input space is conserved in the map.

Once the training phase is completed, the reference vectors are left unchanged. They determine
which cell must react to an (now arbitrary) input point. Since the topology of the input space
is conserved by the map, nearby cells react also to nearby input classes. The conservation of the
topology allows to visualize a multidimensional space in two dimensions. Therefore, maps can be used
to visualize the di�erences between input points occuring in a data set.
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Figure 2: This browser displays a list of images, ususally in response to a query. Here, narrowband
type III bursts (nb III) have been requested. The information displayed consists of the following
elements (from left): the (clickable) image icon, the date, the start and end time of the observation,
the frequency range (in MHz), the frequency program number and remarks about the event (including
the burst types).

3.2.2 Self-organizing maps and boxes

Figure 4 illustrates how a SOM works with boxes. It is �rst trained to react to the shape of boxes.
Then, as shown in the �gure, two samples are \presented" to the trained SOM. A box of a given
shape generates a cell reaction at the bottom left of the map. The other box, which has a signi�cantly
di�erent shape, generates a cell reaction at the top right. Remarkably, if the shape of two boxes di�er
only slightly, their corresponding cell reaction are also nearby in the map.

The boxes contained in image icons are used as input data to SOMs. Each box produces a single
cell reaction. By summing the cell reactions corresponding to individual boxes, a \total" map can be
associated with a given icon. This approach is attractive for the following reasons:

{ About 300 boxes are contained in a single icon. Thus, a large quantity of boxes is available in
the whole archive. This allows to train the SOM with a large number of samples.

{ Because a map represents a sum of cell reactions, and not only a single cell reaction, local
properties of the image content can be revealed.

Indexing features are de�ned by associating a cell of the SOM with each single indexing feature.

3.3 Measure of the similarity between documents

Remember that indexing features are arranged in a speci�c order, thus building a document description
vector. The distance between description vectors, in a given metric, corresponds to the similarity
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Inputs Cells

Figure 3: A self-organizing map consists of an array of interconnected cells. A region of the input data
space is associated with each cell of the network. The dimensionality of the input space is arbitrary.

Figure 4: A simple functional example of the self-organizing map. Assume that the map is trained to
react to boxes (characterized by 6-tuples). It will organize itself so that di�erent shapes of boxes will
make di�erent regions of the map react.

between documents. Consider the space spanned by the description vectors, called the description
vector space. Consider also two document description vectors, ~dj and ~dk in the description vector
space. Their distance can be measured, for instance, using the Euclidean norm:

�E(~dj ; ~dk) = jj~dj � ~dkjj =

 
m'�1X
i=0

(~dj � ~dk)
2

! 1

2

: (5)

However, �E is not necessary the best measure of the \degree of similarity." It fails, for instance, if
similar documents are aligned in a speci�c direction of the description vector space. In this case, the
distance function should take into account the non-isotropic distribution of points in the description
vector space.

For this purpose, another function is often used (mainly in the context of textual information
retrieval), is the direction cosine:

cos(�j;k) =
~dj � ~dk

jj~dj jj jj ~dkjj
: (6)

cos(�j;k) assumes a linear dependence between similar document description vectors. The case cos(�j;k) =

1 represents the highest correlation between ~dj and ~dk, and therefore corresponds to the highest sim-
ilarity.

4 Applications to solar radio spectrograms

Solar radio spectrograms consist of images, often called events, which display the density of the solar
radio ux in the time-frequency plane. Spectrograms share the typical characteristics of astronomical
images: they have a low signal-to-noise ratio, and they contain di�use structures. The structures
are divided into types and sub-types. They correspond to signatures of the emision produced by the
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Main type jDrel

mainj Subtype jDrel

subj

narrowband 114
broadband 73

III 265 large group (> 5 bursts) 26
small group (< 5 bursts) 21
reverse drift 31

modulated 15
IV 56 �bers 33

zebras 8

III-like 11
Blips 32

patchy 21

Pulsations 58 58

cloudy 14
cigar 7

Patches 39
caterpillars 5
large spots 13

Spikes 50 50

Table 1: The classi�cation of radio bursts in types and subtypes used for the evaluation of the ASPECT
system A test collection D of 437 images is used. The number of images per main type and sub-type
classes are given by jDrel

main
j and by jDrel

sub
j, respectively.

acceleration of high-energy particle in the solar corona. The list of types and subtypes used in this
work is given in Table 1.

Parameter Ordering Fine tuning
phase phase

Number of
training samples 10,000 100,000
Radius of the
neighborhood function 30 3
Adaptation factor 0.9 0.02

Table 2: The parameters used to train the SOM.

4.1 Parameters for training the SOM

The SOM is trained in two phases. First, the ordering phase determines the values of the reference
vectors, to establish roughly the correspondence between the topology of the input space and the map.
Second, the �ne tuning phase adjusts accurately the values of the already ordered reference vectors.

The SOM package used in this work has been developed by the group of Kohonen (SOM, 1995).
For the tests presented below, a map of a dimension of 30x30 was used. The parameters given below
are determined experimentally. The are either determined speci�cally for ASPECT, or for SOMs in
general. They are summarized in Table 2.

4.2 Maps for a single type of radio emission

Figure 5 compares maps associated with three images of the same burst type. These images belong
to the class of \type III bursts." The maps present the following characteristics:

{ There are two main regions where reactions are registered. The �rst region is around (15; 15).
The second region is at (20� 25; 5� 10) and is more spreaded.

{ Some regions of the map recorded no reactions at all.
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{ Some regions of the map recorded a relatively small number of reactions, but for each map at
di�erent locations
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Figure 5: Three spectrograms of the same type of radio burst. The map reactions are located in the
same regions (arrows). Other regions did not react at all.

4.3 Map for a di�erent types of radio emisson

Figure 6 compares maps associated with three images of di�erent burst types. These classes are: (1)
type III bursts, (2) millisecond radio spikes and (3) type IV bursts. The maps present the following
charateristics:

{ There is no correlation between the type III-burst map and the type IV-burst map. This
corresponds to expectations: type-III and type-IV bursts correspond to signatures of di�erent
processes.

{ Between the type III-burst map and the millisecond-spikes map, only a few cells have reactions
in common.

{ Between the type IV burst-map and the millisecond-spikes map, there is a correlation in the
region (10� 20; 25� 30). For type IV however, a whole region of the map have reacted with no
correlation with the other maps.

5 Retrieval e�ectiveness

An image retrieval system can be evaluated by considering its capacity to e�ectively retrieve infor-
mation relevant to a user. It is called the retrieval e�ectiveness. Below, it is measured for ASPECT.
The indexing features considered are derived using the method presented in the previous section.

The retrieval e�ectiveness is measured by the recall and the precision (van Rijsbergen, 1979). For
a given query and a given number of documents retrieved, the recall gives the ratio between the
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Figure 6: Three spectrograms of di�erent types of radio bursts. The map reactions are located in
di�erent domains (arrows). For instance there is little correlation between the �rst map (type III
burst) and the third map (type IV burst).

number of relevant documents retrieved and the total number of relevant documents in the collection
considered. The precision gives the ratio between the number of relevant documents retrieved and the
number of retrieved documents.

Recall and precision values for a system can be represented in a recall and precision graph (Frei
et al., 1991; Raghavan et al., 1989), where the precision of the system is plotted as a function of
the recall. This representation allows, for instance, to compare the e�ectiveness of di�erent retrieval
functions. The method to derive a recall and precision graph on the basis of these two values is
described by Sch�auble (1997).

The recall and precision graph for ASPECT is computed as follows. 32 reference (\query") images
are selected from a test collection of 437 images. They contain solar radio bursts that are divided into
several main types and subtypes (see Table 1). The classi�cation processed by the retrieval system is
compared with a classi�cation that have been done by hand (Isliker and Benz, 1994). In this way, it
is possible to decide if an image is relevant or not.

Two reference images are selected per subtype. For these images, a search for similarity is started.
The SOM-based response of the system is compared with a global indexing feature-based response
(Csillaghy, 1997). The similarity between the reference and the other images is computed using the
Cosine function given in Equation 6. The resulting recall and precision graph is shown in Figure 7.

The graph shows that the precision is better for SOM indexing features. For low recalls, the
precision is high: when considering the classes of type III bursts and type IV bursts, a precision above
50% for recalls lower than 10% is attained. Unfortunately, the precision breaks down if classes with less
elements are considered. Moreover, sub-classses retrieval precision is also much lower. Nevertheless,
the SOM-generated indexing features lead to a better precision than global indexing features.
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Figure 7: The recall and precision graph for the ASPECT retrieval system. Retrieval status values are

computed with the Cosine function. The following graphs are compared: Solid line: retrieval of type III

and type IV bursts only. Dashed line: retrieval of all main types. Dashed-dotted line: retrieval of all

subtypes. Dashed-triple-dotted line: retrieval of main types with global indexing features. Long-dashed

line: retrieval of subtypes with global indexing features.

6 Conclusions

We have shown that SOMs can be used to attain high levels of retrieval e�ectiveness. Methods to
improve the precision, especially when considering subtypes have to be further investigated. This can
be done for instance by giving more or less weight to some boxes (or to some regions of the map)
when analyzing the image icons.
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