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Abstract

The development of distributed applications is an open
area involving researchers from different communities. We
propose an object-oriented approach to the development
of distributed applications emphasizing separation of
concerns. Our approach combines the needs of transparen-
cy, encapsulation of distribution issues, and support of
non-traditional models, where cooperation and sharing
are needed. The development process is constructive,
thus allowing partial verification of results. We recognize
seven concerns: fragmentation, replication, naming,
concurrency, failure, configuration, and communication.
Each concern is perceived in three levels of abstraction:
models, policies and mechanisms. Besides a development
centered on separation of concerns we propose another
process centered on development stages. Both, concerns
and stage perspectives, are part of an integrated and flexible
development process.

Keywords: Distributed Systems and Architectures,
Object-Oriented Analysis and Design.

1 Introduction

Sequential applications in a centralized system use tra-
ditional models where activities and data are isolated.
In distributed systems activities and data are intrin-
sically distributed and shared. Distribution yields a
model inherently more complex, thus making appli-
cation development a difficult task. Transparency, of-
fering in a distributed system the same model that cen-
tralized systems offer, has been the goal of researchers.

Distributed operating systems and platforms [29,
6] have been proposed offering several degrees of

transparency: failure, access, location, concurrency,
replication, migration, performance, and scaling [11].
These researchers do not agree on the need of full
transparency, raising two questions: Is it possible to
achieve? Is it worthwhile? Nevertheless, with trans-
parency, developers needn’t concern themselves about
distribution issues, since the platform encapsulates
them.

The obvious advantages of transparency have
however some drawbacks: absence of detail and lack
of support for non traditional models [32]. In most sys-
tems, transparency does not allow distributed issues
to be handled at different levels of abstraction, accord-
ing to the particular application needs. Moreover, only
traditional application models are supported by such
systems. It is hard to support new emerging areas, as
cooperative work, where those models are relaxed.

Our approach combines the advantages of trans-
parency and the support of non-traditional models.
Furthermore, development can be done at different
levels of abstraction.

We propose a constructive development with sep-
aration of concerns. Applications are developed in a
stepwise manner, handling one concern at a time. One
of our environment’s key features is the independence
between solutions for each concern, allowing trans-
parency in all issues but the one being solved. So-
lutions of concerns do not interfere1, although some
combinations may not be possible. Furthermore, a
functionality-centered process is also described and
consistently integrated with the concerns perspective.
Verification and debug are also stepwise processes.
Default solutions are offered to achieve a rapid devel-
opment and support for traditional models. We offer

1In section 4 we explain what is meant by non-interference.
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tools which incorporate default solutions, allowing a
transparent development.

Concerns are perceived in three levels of abstrac-
tion: models, policies and mechanisms. Solutions for
each one of these levels are considered in the construc-
tion of each concerns’s solution. This approach allows
several independence levels and, so, an uniform devel-
opment of heterogeneous applications: heterogeneity
of policies and mechanisms. The mechanism level of
abstraction can be implemented over heterogeneous
languages and machines.

Our approach follows the object-oriented analy-
sis and design paradigm. Other object-oriented ap-
proaches, e.g. [33, 18, 4, 9], have as yet not addressed
distribution issues in depth.

The rest of this paper is structured as follows. Dis-
tribution concerns are described in section 2. In section
3 abstraction levels are introduced. The development
process either centered on concerns or on stages is
described in sections 4 and 5, respectively. Section 6
describes the concurrency concern in depth. Relat-
ed work is presented in section 7 and conclusions in
section 8.

2 Concerns

Designing distributed applications involves the solu-
tion to particular problems. Each one of these prob-
lems is a development process concern. We have rec-
ognized seven main concerns which we believe cover
most distribution issues: fragmentation, replication,
naming, concurrency, failure, configuration, and com-
munication.

� Fragmentation. A distributed application
schema is the composition of several schemas
that together constitute the application schema2.
When designing distributed applications using
our approach, application functionalities are iso-
lated in different logical distribution units, re-
ferred to as worlds. The fragmentation con-
cern is about the definition of worlds and their
schemas such that application semantics results
from the semantics of the different worlds. For
instance, in a bank’s distributed database sys-
tem, client accounts are stored in the local
database branch where the account was open.
In the example, each local database branch is a
world and the client account is fragmented in the
different worlds.

2We use schema to denote both static and dynamic structure of
applications.

� Replication. Some distributed applications
need to replicate information because of both
availability and reliability. Availability permits
access to replicated information without remote
accesses. Reliability hides failures of remote
nodes from the local computation. The replica-
tion concern defines replica objects that are dis-
tributed between worlds and together behave
consistently as a unique object. The replication
concern should preserve some kind of object con-
sistency.

� Naming. Distributed applications use different
name spaces and so the meaning of a name de-
pendents on a particular name space context.
Furthermore, names can have different proper-
ties depending on the name space they belong to,
e.g. location transparency, where the name does
not restrict the location of the named object to a
particular node. The naming concern defines the
name spaces needed for the distributed applica-
tion such that names coexist consistently in the
application, e.g. different name spaces sharing a
name.

� Concurrency. Shared access to resources is a
feature of distributed applications. Applications
must generate and control the concurrency with-
in a resource. Concurrency control has sev-
eral properties, e.g. it may be transparent in
the sense that users do not cooperate when ac-
cessing the resource. The concurrency concern
should define concurrency generation and con-
trol. The former creates and destroys activities.
Concurrency control constrains undesirable in-
teractions.

� Failure. In distributed systems, applications
are likely to fail and the robustness degree de-
pends on application semantics. Failures can be
masked from the user. The failure concern de-
fines the desired degree of robustness and guar-
antees that it is achieved.

� Configuration. During an application’s lifetime
worlds can be created and destroyed. Upon cre-
ation, worlds and their objects, need to be inte-
grated within the application, and, after a world
is destroyed, the application should adapt it-
self to the new configuration. Several kinds of
configurations are possible: static configuration,
where inter-world relationships are hard-coded;
or dynamic configuration, where inter-world re-
lationships can change at run-time. The config-
uration concern defines how worlds and their
objects react upon creation and destruction of
other worlds. For instance, when a server is shut
down, client nodes must send requests to anoth-
er server.
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� Communication. Worlds in a distributed appli-
cation can communicate using different commu-
nication paradigms as, for instance, procedure
call or mailboxes. These paradigms have dif-
ferent communication models and different in-
vocation syntax. The communication concern
defines the communications paradigms the ap-
plication uses and integrates them within the ap-
plication, e.g., asynchronous communication is
related with the concurrency concern.

The degrees of transparency referred to in sec-
tion 1 [11] are obviously related to distribution con-
cerns since they intend to make development easier by
encapsulating the distribution issues in the platform.
Failure, concurrency and replication concerns handle
the same problems as failure, concurrency and repli-
cation transparency. Access transparency, in which
identical operations are used to access local and re-
mote objects, is handled by the communication con-
cern. Location transparency, in which the application
is not aware of the resource location, is handled by
the naming concern. Migration allows for an object
to move from a source world to a destination world.
This is a combination of the replication concern, since
it corresponds to the creation of a replica in a desti-
nation world and deletion of the replica in the source
world, and of the configuration concern, since the new
replica should be accessible to clients. Performance
transparency, reconfiguration of the system to improve
performance, is handled by the configuration (dynam-
ic) concern. Scaling transparency, expanding in scale
without changing the application structure, is not han-
dled by a particular concern but is achieved if all the
concerns consider scalable solutions.

3 Abstractions

We consider that concerns are divided into three levels
of abstraction: model, policy and mechanism (figure
1). Models describe the expectation of users about
the application or system behavior. Policies define
algorithms which support application models. Mech-
anisms define functionality which is used by policies
to implement their algorithms.
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Figure 1: Abstractions and concerns.

We distinguish between abstract and concrete
mechanisms. Abstract mechanisms fulfill the needs

of models and policies and are platform independent.
Concrete mechanisms are the actual platform mech-
anisms and are used to implement abstract mecha-
nisms. Abstract mechanisms should be expressive
enough to support policies and simple enough to be
implemented by platform mechanisms. Due to their
proximity to platform mechanisms, the same abstract
mechanism can be used in the implementation of dif-
ferent concerns policies.

Consider, as an example, the concurrency concern
which is divided in concurrency generation and con-
currency control. A possible model of concurrency
generation is one in which the user is not aware of
the existence of concurrent activities. A model of con-
currency control is a serial model and establishes that
concurrent access to resources do not interfere, which
means that the effects of concurrent execution of ac-
tivities should be equivalent to their serial execution.
From the user’s point of view activities are indepen-
dent since other activities (users) currently executing
are not relevant to the results. This model is sup-
ported by database systems, either using optimistic
or pessimistic policies. Each one of these policies can
use abstract mechanisms to generate concurrency, e.g.
Activity which abstracts thread mechanisms, and to
control it, e.g. MutualExclusion which abstracts mu-
tex mechanism.

Perceiving concerns in three levels of abstraction
offers independence, heterogeneity and transparency
while allowing concerns to be handled at different lev-
els of detail. The separation of models and policies
allows a model to be independent of a particular al-
gorithm which supports it. Separation of policies and
concrete mechanisms permits policies to be indepen-
dent of implementation platforms, e.g. Activity can be
implemented in a given platform with operating sys-
tem threads while MutualExclusion can be supported
by synchronization primitives Mutex and Condition.
Policy independence allows the same model to be si-
multaneously supported by different policies, so that
heterogeneous policies, offering the same model, can
coexist in the same application. Moreover, indepen-
dence between policies and concrete mechanisms al-
lows the application to be supported by heterogeneous
platforms.

Sequential centralized systems offer a set of tra-
ditional models, which we call strict models, where
activities and data are isolated. In these models users
expects system reaction considering only its inputs.
Degrees of transparency [11] and ACID (Atomicity,
Consistency, Isolation, Durability) properties of trans-
actions [44] offer the strict models of sequential and
centralized systems on top of distributed systems3.

3Quite often strict models are supported by computer mecha-
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The strict models expected by users are built upon
computation non-strict models inherent to distribut-
ed systems, e.g. a communication delay can gener-
ate replicas with different values (figure 2). However,
these models do not correspond to application needs
being a consequence of computational behavior and
can be considered for low level efficient implementa-
tion [25].

Strict Models

Application Non-Strict Models

Computation Non-Strict Models

Figure 2: Strict and non-strict models.

More recently, developers are requesting partic-
ular non-strict models for cooperative work [32] in
which user control and synergistic cooperation [3, 13]
are needed. These models fulfill application semantics
and we refer to them as application non-strict models
(figure 2).

Since application non-strict models are still an
open research area, no general solutions are as yet well
established. Therefore our approach permits applica-
tion non-strict models to be built using policies and
mechanisms that do not encapsulated distribution is-
sues, instead of offering closed, not open, solutions for
this kind of models.

Strict models are well established and propose a
virtual interface where distribution issues are masked.
Strict models for the fragmentation concern consider
that all objects have the same interface, the designer is
not aware of logical distribution, and the application
schema is included in only one world. In strict models
for the replication concern all replicas have the same
state, in the sense that any replica answers identically
to requests. Strict models for the naming concern con-
sider all names to be recognizable and identifying the
same object in any world (names are universal and ab-
solute). Isolation, where activities do not interfere, is
the strict model for the concurrency concern. The strict
model for the failure concern masks failures allowing
designers to ignore faults. In the strict model for the
configuration concern worlds and objects are statical-
ly connected with others. Finally, the strict model for
the communication concern considers that distribut-
ed communications are equivalent to procedure calls,
synchronous and without failures4.

The development of distributed applications is
usually centered in the concrete mechanisms offered

nisms that hide distribution issues.
4Remote procedure call is a mechanism that implements this

model.

by the platforms. For instance, some mechanisms have
been proposed to support particular models, e.g. re-
mote procedure call for a strict communication model.

4 Activities

The development process assigns an activity to each
concern. Activities are responsible for choosing the
right solution to concerns in the application context.
Furthermore, activities should integrate the solutions
in the application.

4.1 Representations

Activities can manipulate two kinds of representa-
tions: specification and code. Specifications describe
solutions in a language and platform independent
manner. Activities can generate code once target plat-
forms and languages have been chosen. There is
a close relationship between specification and code.
Code implements the specification and can be auto-
matically generated if tools are available. It would
be desirable that both, specifications and code related
to a given concern, were developed and tested inde-
pendently of other concerns, thus allowing stepwise
verification and testing (figure 3).

Specification
Generation

Coding

Tuning Tuning

Integration

Code

Integration

Reuse Reuse

Product Product

Figure 3: Activities progress.

Each activity can reuse products in specification
and code. These products assist in concern solution
since they hold some of the domain semantics.

Integration of solutions is twofold: integration
of concerns and integration in the application. The
former should consider solutions adopted for other
concerns because they can interfere, in the sense that
some solutions for a concern can restrict the set of pos-
sible solutions for another, e.g. dynamic configuration
implies the existence of name spaces with special prop-
erties. Moreover, some tuning can be done between
solutions by using a solution that integrates and opti-
mizes several solutions. The latter integrates solutions
such that changes to existing representations are min-
imal. These controlled changes allow representations
to be traceable, i.e., it is possible to trace objects in
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one representation to objects in another [18]. Further-
more, minimal changes allow for stepwise verification
and testing: new inconsistencies and bugs can only be
caused by the solution for the current concern.

4.2 Assistant Products

During development, predefined components, de-
fined in specification or code, can be used as assistant
products. These products can be concrete, ready to
use solutions, or abstract, general solutions that need
to be specialized, e.g. an object-oriented library and
its specialization.

The existence of a set of concrete products with
the help of integration tools permits a selective trans-
parency of concerns to the designer. The designer only
needs to choose which concerns he wants to consider
and which he wants solved using default solutions of
traditional models, policies and mechanisms.

4.2.1 Frameworks

A framework is an aggregation of collaborating class-
es with a common purpose, it constitutes a skeleton
which should be fleshed out to build complete appli-
cations [45].

Concerns can be seen as domain problems and
analyzed using domain analysis [42]. Frameworks as-
sisting particular concerns were developed as result of
concern domain analysis, e.g. study research done on
replication consistency allows the design of a frame-
work which abstracts several strict model policies and
allows specializations of these policies to be integrated
in the application. The framework defines an abstract
interface that concrete specializations preserve thus al-
lowing concrete solutions to be interchangeable.

Frameworks can be defined both in specifications
and in code. Obviously, specification frameworks are
language and platform independent. Frameworks use
other assistant products in their construction as pat-
terns and abstract mechanisms.

4.2.2 Patterns

A pattern is a grouping of classes and objects which
can be applied in more than one problem domain [8].
Patterns are more than a solution, they describe when
to apply themselves, the elements that make up the de-
sign solution and the trade-offs of applying the pattern
[17].

Patterns are identified when developing frame-
works. They constitute some of the frameworks build-
ing blocks. Patterns differ from frameworks because
they are domain independent, e.g. patterns for recov-
ery control could be used in replication, concurrency
and failure concerns.

4.2.3 Abstract Mechanisms

Abstract mechanisms can be represented as classes
that define a generic interface providing mechanism
functionality. Activities use abstract mechanisms and
an implementation with concrete mechanisms. De-
fault implementations of abstract mechanisms permit
rapid development and testing in the most convenient
development platform, e.g. testing of concurrency
control is done in a single address space. Abstract
mechanisms support mechanism independence in the
development process and permit deferring implemen-
tation decisions when finding solutions to concerns.

5 Process

The development process of distributed applications
is described using the concepts and nomenclature de-
fined in [27].

The development process can be divided into
stages. A stage has a purpose, the stage goals, and
describes a set of activities to carry out in order to
achieve it. Stages use concepts in the generation of
deliverables. Deliverables are representations of the
application. Concepts can be either particular to one
stage or common to several.

The stages we consider as part of the develop-
ment of distributed applications are: analysis, logical
distribution, durability, concurrency, robustness and
physical distribution. Each one of these stages intends
to enrich application functionality.

� Analysis. During analysis user requirements are
defined. Requirements should define the models
the user is expecting.

� Logical distribution. A distributed computing
system is defined in [1] as a system of multiple
autonomous (logical) processors that cooperate
only by sending messagesover a communication
channel. Note that this definition does not dis-
tinguish between physically separated compo-
nents and logically autonomous modules com-
municating via messages. The logical distribu-
tion stage designs the application as a set of log-
ically distributed worlds that can communicate
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only through messages 5. Several concerns are
involved in this stage: fragmentation, naming,
replication, and configuration. Fragmentation
ensures that the global application schema is the
composition of several local schemas. Naming
allows each world to have its own name space.
Replication deals with the consistency of local
replicas generated by fragmentation. Configu-
ration handles world management.

� Durability. The durability stage provides the
application with persistence support. It is nec-
essary to consider the replication concern be-
cause transient and persistent replicas should be
kept consistent. Moreover, the naming concern
is relevant since storage offers a new naming
space that must be integrated with other naming
spaces.

� Concurrency. The concurrency stage provides
the application with concurrency management
and concurrency control. This stage consid-
ers concurrency and communication concerns.
The whole application can be seen as a resource
shared by users and solutions of the concurren-
cy concern extended to the whole application.
Some communication models are strongly relat-
ed to concurrency, e.g. the mailbox paradigm
requires an activity in the server.

� Robustness. After this stage, applications are
able to handle and recover from failures. This
stage considers failure, replication, naming and
configuration concerns. Replication is used to
support reliability. Naming offers identity to
the set of replicas while configuration is need-
ed when partitions occur.

� Physical distribution. Physical distribution
turns logical distribution into a physical one.
Mainly, abstract mechanisms should be imple-
mented in each one of the platforms. All ac-
tivities are involved in this stage since all the
mechanisms they used need to be implemented.

The relationship between stages and concerns is
depicted in figure 4.

Analysis utilize use case representations [18], de-
scribing user requirements, enriched with model de-
scriptions, e.g. the degree of interference between use
cases [39]. All other stages use an object-oriented no-
tation for representations as in [9].

The designer can optionally skip some of the
stages, e.g. some distributed applications do not need
to be robust if they are not critical and can fail.

5In this stage the strict model, procedure call, is used
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Figure 4: Stages and concerns.

Our approach proposes a flexible development,
adjustable to designer needs. The development can be
centered in the sequence of stages, where solutions for
a concern are revisited in each stage being extended
and integrated, or done concern by concern, where
the activity takes into account all the functionality the
application requires.

6 Concurrency Concern

To illustrate our proposal, the concurrency concern is
chosen. This is an ongoing work [38].

Concurrency concern generates and controls ac-
cess to shared resources. If the resource allows simul-
taneous activities, it is necessary to prevent undesir-
able interferences. This task is usually referred to as
concurrency control. Our main work was centered in
concurrency control.

6.1 Abstractions

There are several models of concurrency control where
isolation is the strict model. Isolation ensures sequen-
tial execution in face of concurrency. Interleaving of
actions is allowed if equivalent to their sequential exe-
cution. New requirements for non-strict models have
been proposed in [3]: supporting long transactions,
supporting user control, and supporting synergistic
cooperation.

The strict model is supported by several policies.
Concurrency control policies use two different per-
spectives [28]: pessimistic [19], when the application
is expected to have high contention, and optimistic,
when the level of contention is supposed to be low.
Moreover, policies are distinguished by their synchro-
nization primitives: locking [15] and timestamping
[41]. Policies are divided [43] in dynamic, in which se-
rialization order is determined from the order in which
they access the objects, and static, in which serializa-
tion order is based on a predefined total order. The
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combination of this three aspects generates well know
policies as, for instance, two-phase locking, which is
pessimistic, dynamic and locking.

Concurrency control includes mechanisms that
represent activities and which allow them to commu-
nicate and synchronize.

Besides the levels of independence between mod-
els, policies and mechanisms it is possible for different
policies to coexist within the same applications (pol-
icy heterogeneity) and different implementations for
abstract mechanisms (platform heterogeneity). The
coexistence of heterogeneous policies is feasible [30].

6.2 Activities

The models and assistant products used in this activ-
ity have been described in [38]. A domain analysis
was done of the concurrency control domain and con-
sequently a framework, patterns and abstract mecha-
nisms were defined.

6.2.1 Assistant Products

The framework establishes a uniform interface to con-
currency control policies for the serial model (seri-
alizability policies). Particular policies are built by
framework-derivation. Policies are constructed re-
defining three characteristics: transactions execution
order definition time, object accesses consistency check
time, and synchronization primitives to be used (lock-
ing or timestamping).

The set of objects that belong to the same world
share the same policy but different worlds can use
different policies. The framework permits the coexis-
tence of several concurrency control policies within the
same application. An inter-world invocation creates
a transaction in the invoked world, sub-transaction of
the invoker transaction, thus generating a set of nest-
ed transactions. To commit a transaction, a two-phase
commit protocol verifies if local orders of execution
are compatible, aborting the transaction otherwise.

In order to control concurrent accesses to objects,
accesses must be trapped. An object manager is de-
fined for each object and all invocations are done
through this new object.

The framework uses patterns for recovery control,
either based on versions or replicas. However, pat-
terns are not independent of the particular concurren-
cy control policy: optimistic policies require recovery
control using replicas, while pessimistic policies re-
quire versions. The designer must choose the correct
pattern for the policy under going implementation.

The abstract mechanisms we needed were Activ-
ity and MutualExclusion. At the physical distribution
stage we used Thread or RPC to implement Activity
if the prototype was centralized or distributed respec-
tively.

6.2.2 Representations

Concurrency control specifications and code are con-
structively integrated with previously developed ones
such that traceability [18] is achieved in both code and
specifications. The integration does not interfere with
results of previous activities. This is achieved if object
managers and transactional invocations are carefully
defined.

Figure 5 depicts a transactional invocation, we
enriched the Fusion [9] notation with double arrows
for distributed invocations, and its counterpart after
the concurrency control stage.

m1 a:ObjectManagerA

m2(args)Create(b:B,m2,args)

new tr:Transaction b:ObjectManagerB

a:A
m1

m2(args)

b:B

Figure 5: Transactional invocation.

Figure 6 shows the code after the logical distribu-
tion stage. All transactional invocations are traced in
the code by new operations, ADistCallB in this exam-
ple. Introducing code for effective transaction genera-
tion requires only redefinition of these new operations.

void A::m1()
{

...
ADistCallB(args);
...

}

void A::ADistCallB(args)
{

b->m2(args);
}

void B::m2(args)
{

...
}

Figure 6: Code generated after logical distribution.

In order to intercept invocations, object managers
must have the same interface of the objects they en-
capsulate. We define object managers without chang-
ing the client class using the envelope/letter idiom
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described in [10]. Object manager classes use the orig-
inal names and redirect invocations to instances of the
original classes (now renamed).

A set of default policies are available and can be
automatically introduced into specifications and code.
Afterwards, policies can be replaced by new ones.
This approach allows rapid application development
and future tuning by a programmer which has specific
knowledge of application semantics. Tools are being
constructed that automatically generate the envelopes
and include concurrency control code [24].

An implementation was done in C++[40] on UNIX
and using DCE threads package. The implementation
allows the construction of centralized prototypes with
logical distribution which can be debugged without
interference of communication faults, errors or delays.

7 Related Work

Recently, researchers have raised the need for the sup-
port of non-strict models. In [32] it is stated that com-
puter support for cooperative working (CSCW) needs
open distributed systems with a clean separation of
mechanisms and policies, tailored mechanisms and
policies. In [3] the new requirements for concurrency
control are described: supporting long transactions,
supporting user control, and supporting synergistic
cooperation. [3, 13] describe several transactional sys-
tems and models that support non-strict models. Mul-
tidatabasesneed to maintain consistency of related da-
ta; [34] proposes the specification of constraints among
multiple databases defined in terms of time, data state,
and operation occurrence.

Pu describes the problem of heterogeneity of poli-
cies in superdatabases and proposes a solution for the
integration of different concurrency control policies for
the serial model [30].

The degrees of transparency [11] that have been
proposed are supported by system mechanisms [29, 6]
implementing the strict models. The system is fully
transparent if traditional mechanisms are completely
hidden by the new mechanisms.

Several systems offer support for the develop-
ment of distributed applications [7]. In particular,
systems like Argus [20], Avalon [14], Arjuna [37] and
Hermes [16] offer different architectures to support
distribution issues. Argus offers a modular concept
and encapsulation. Avalon and Arjuna offer a set of
object-oriented abstract classes which provide distri-
bution functionality and, in Hermes, the functionality
is set by invocation parameters.

From the Open Distributed Processing (ODP) ref-
erence model [31] point of view applications should
be developed using several perspectives: enterprise,
information, computational, engineering, and technol-
ogy. The engineering perspective is in charge of dis-
tribution policies while technology uses mechanisms.
During the development process, entities in a perspec-
tive are re-implemented using lower level perspec-
tives. Since the distribution is transparent for the other
perspectives it is not clear where models of distribu-
tion concerns should be specified.

In [21], pre- and post-conditions are used to de-
fine user-oriented specifications of distributed applica-
tions free from implementation details but with perfor-
mance requirements. This approach is centered in the
specification of models and the specification of non-
strict models results from relaxing strict models which
are the expected.

“Pictures that play” [5] are design diagrams to
explore alternative designs without the need of com-
plete and consistent models. The development pro-
cess is centered on the system functionalities and the
emphasis is put on the concerns of concurrency and
communication.

DOCASE [26] abstracts common design elements
and separates distribution aspects from application al-
gorithms using superimpositions. Design elements
include the concept of configuration element and in
particular the concept of logical node. Relation types
specify complex semantic relationships as interaction,
collocation and cooperation. A repository, holding
design artifacts, is used to the reuse design elements.
Superimpositions allow a constructive development.
Reflection is used to deal with dynamic configuration
[46].

The Conic environment [22] separates the con-
figuration facilities from the programming language,
offering dynamic configuration capabilities. Logical
nodes are configured by the configuration language
and represent autonomous and reusable entities. The
development process is constructive and dynamic con-
figuration is the solution for modification and evolu-
tion. Heterogeneity is supported by an abstract run-
time which is defined using Conic language.

The fragmented object model [23, 12] offers two
different levels of abstraction: transparency of distri-
bution issues for clients, and relevance of distribution
issues for designers. Objects, when split in several ad-
dress spaces, have a fragment in each one of them. The
designer can define policies and mechanisms by pro-
gramming fragments. Default fragments are offered
for common policies and mechanisms.

PROTOB [2] uses high-level Petri nets and
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dataflows to model objects of an event-driven system.
To develop an application, an executable model of the
system, the set of its objects, is built to allow interac-
tive validation of system’s behavior. Afterwards, the
model is emulated taking into account implementa-
tion details, and finally application code is generated
for the real environment.

Schmidt proposes a framework [36] which sim-
plifies the development, configuration and reconfig-
uration of applications. It provides a collection of
reusable components for communication, service con-
figuration, and concurrency. In particular a pattern,
called reactor [35] for demultiplexing and dispatching
of multiple event handlers, is extensively used.

Object-oriented analysis and design methods, e.g.
[33, 18, 9], are becoming widely used in the develop-
ment of applications. Nevertheless, developing ap-
plications for distributed object-oriented systems in-
volves issues that suggest deep changes in current
methods [9]. The method described in [4] treats design
in depth and has a notation capable of representing
several kinds of concurrency semantics and of object
invocation.

8 Conclusions

Our development process allows constructive devel-
opment of applications and the traceability of devel-
opment from specifications to code. It integrates with
a global development process, from analysis to imple-
mentation, and consistently relates the levels of ab-
straction of distribution issues to the stages of the de-
velopment process. Development is flexible, because
it can be either centered on concerns or on stages.

The requirements of CSCW presented in [32] are
fulfilled by our development process. Moreover, we
introduce the model abstraction independently from
policy abstraction, thus allowing application develop-
ment using heterogeneous policies [30].

Our approach is not formal, but the three-level
distinction of abstractions allows a consistent devel-
opment. During analysis the models are defined in a
user-oriented perspective free of implementation de-
tails [21].

The global architecture we propose is centered on
the design of generic solution components to solve
specific concerns. Each of these generic solutions is
described by object-oriented frameworks from which
concrete solutions are obtained by specialization.
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