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Abstract

This paper is concerned with a formal model for object databases. Category

theory is used to de�ne the Product model, a formal notation for representing

features of an object based database. In particular, we will examine how this model

deals with three of the most important problems inherent in object databases, those

of queries, closure and views, as well as how our model deals with more common

database concepts, such as keys, relationships, aggregation, etc. We will implement

a prototype of this model using P/FDM, a semantic database system based on the

functional model of Shipman, with object-oriented extensions.

1 Introduction

The relational data model uses set theory to provide a formal background, thus ensuring a

rigorous mathematical data model with support for manipulation. The newer generation
database models are based on the object-oriented programming paradigm, and so fall short
of having a formal background, especially in some of the more complex data manipulation
areas. We use category theory [Barr90] to provide a formalism for object databases1,
known as the product model.

This paper will highlight the key aspects of the product model, in particular, we will
examine how this model deals with three of the most important problems inherent in
object databases, those of queries, closure and views. As well as this, we do investigate
the more common database concepts, such as keys, relationships, aggregation, etc., and
we will also discuss how our model approaches these concepts.

A prototype of this model is currently being produced, using P/FDM [Embury91,
Gray92], a database system based on the functional data model of Shipman [Shipman81],

but which has incorporated some object-oriented extensions. We will discuss our reasons

for using P/FDM, and show some of the problems that occur in developing a categorical
database.

The aims of our work on this theoretical database model are to demonstrate:

� that category theory provides a feasible formal model for object-relational databases;

� that a practical categorical database can be implemented, and that it can suitably
model real world data storage problems;

1not necessarily object-oriented, but one which contains most of the concepts from an object-oriented

model



� that the implementation problems of closure, queries and views inherent in most of

the current object-based databases can be resolved through a categorical formalism.

The object-relational model [Stonebraker94] is similar to our formalism for object-

databases, while our relationships are similar in functionality and appearance to those in

the entity-relationship model [Chen76]. We also use Boyce Codd Normal Form [Ullman88]

as a normalisation constraint when determining the keys in a particular database object,

ensuring a high level of consistency in the database.

The three main problems apparent in most object database systems of today are

those of creating views, closure from queries, and the query languages themselves. Our

categorical model attempts to solve these three problems.

Because many of the current object-oriented databases are based heavily on C++ (or

some other object-oriented programming language), they are usually no more than just

persistent object-stores. This means that views and closure are di�cult to implement

because they do not migrate easily into object-oriented programming languages, due to

the fact that run-time schema changes are required, and new objects require creating on
the y.

The matter of a query language is the most interesting prospect. Some of the newer
object database systems are being released with languages based on SQL, and there is a
new SQL3 standard [ANSI94] being written. Many of the current systems usually provide

no more than C++ queries though, i.e. the application developer must write any queries
needed as C++ methods.

Our query language will be heavily inuenced by Shipman's DAPLEX, while sup-
porting the whole of the functionality of an SQL based query language. DAPLEX is a
functional data model with a query language based entirely on functions and function
composition.

One important question must be `why category theory?' Although any theory could
be used for modelling object databases, the multi-level architecture of category theory,
compared to the atness of most other theories such as set theory, makes the model less
complex when we need di�erent levels for schema, etc. in the database. Category theory
is also based on the arrow as its primitive concept, giving natural modelling of dynamic

as well as static aspects. As well as this, the diagrammatical tools of category theory, i.e.

diagram chasing giving algebraic equations, and the consistency tests, are useful additions
to any model of a database.

The categorical data modelling manifesto by Cadish and Diskin [Cadish94], suggests

that category theory has an unexpectedly high relevance for semantic modelling, database

design and database theory. Their manifesto supports the reasons we have outlined for
using category theory for formalising databases, in particular they believe that using

the arrow for de�ning internal structure of objects, as we do, is just the speci�cation
methodology the database area needs for universal models.

The rest of this paper will give an overview of the categorical concepts used for the

product model, and highlight how we aim to achieve queries, closure and views. Then
�nally, we will discuss our use of P/FDM for developing a prototype of the product model,

highlighting the major implementation problems that we have encountered, and discussing
other implementations of categorical data types that exist already.



2 The Product Model

Our product model is based mainly on the concept of products and coproducts (sums)

in category theory, which give us database concepts such as relationships, aggregation,

inheritance, etc.

2.1 Classes and Objects

The basic concept of category theory is the category. A category is a collection of arrows

which provide mappings between attributes2. These arrows may be identity arrows, and

are composable if the source of one arrow is the target of another. We use these categories

for representing objects in the database. Categories are used to represent both the class

intension of the database object and the instances of a class, known as the extension. The

attributes of the database object, both intensionally and extensionally, are represented as

a partially ordered set (POSET) of projection arrows, where these arrows are the trivial

functional dependencies within the object.

Φ

{a, b, c}

{b, c}{a, c}{a, b}

{a} {b} {c}

Figure 1: Partially ordered set with non-trivial functional dependency fag ! fbg

By adding the extra non-trivial functional dependencies to the partially ordered set,
we can then determine the primary key of the object, by �nding the new in�mum (greatest

lower bound) of the POSET with the extra arrows incorporated. If an in�mum does not
exist, then the set of maximal lower bounds gives us a choice of candidate keys, where it is

then really up to user discretion about which is most suitable for use as the primary key.
This method also provides a normalisation test, to check whether the object conforms

to Boyce Codd Normal Form (BCNF), i.e. all the determinants (sources of non-trivial

functional dependencies) are candidate keys. The example POSET in �gure one illustrates
this method, with a single non-trivial functional dependency fag ! fbg added.

2usual de�nition is that mappings are between objects, but to avoid confusion between categorical

objects and database objects, we are calling the categorical objects attributes



The primary key of an object is the initial object of the category, and gives us an

unique object identi�er for each object in the database. This is di�erent to most other

object databases, where object identi�ers are a system de�ned concept, and never have

any obvious relationship to the data stored other than as a way of referencing a particular

object.

The primary key determination, and BCNF test, are both carried out on the intension

category, which stores the names of the properties of an object. These properties of an

object can be both attributes, i.e. the actual persistent data values which we wish to store,

and derived data, as the result of some method on other persistent and non-persistent val-

ues. As stated previously, in the intension category, the names of attributes, and method

names as mappings, are stored. The extension category represents the instances of the

intension, and thus stores attribute values. A third category stores the type information

for a particular object, storing the domain for each attribute in the object.

CLS OBJ

TYP

I

E

P

Figure 2: Mappings between intension, extension and type category

The arrows between the three categories are functors, where a functor is a mapping

between the attributes and arrows in a source category to the attributes and arrows in
a target category. So, the diagram in �gure two commutes, i.e. the values stored in the
extension categories are consistent (that is they have a correct class intension, and the
types of its values are correct) when P � E = I, where TYP is the type category, CLS is
the intension category, OBJ is the extension category, and P, I and E are the mappings

between those three categories.

2.2 Relationships

With the above concepts, we have the capability of representing database objects, ensuring
that the naming and typing of attributes and methods in the object are consistent. We

will now look at the two forms of relationship in the object-relational model, the binary
relation between two objects, and inheritance. Note that aggregation is easily supported

as either an arrow within a category mapping to a set of values, or through using the
binary relationship concept.



2.2.1 Binary Relations

The categorical concept of a pullback allows us to represent relationships between objects

in the database, with the functionality of relationships in the entity-relationship (E-R)

model. A pullback is a product between two attributes (in this case, we use the initial

objects in the database objects) restricted over some other attribute, such as the set of

orders (O) in the relationship between suppliers (S) and parts (P), as shown in �gure

three.

π r

S

P

S x    PO O

f

g

π l

Figure 3: Relationship between suppliers and parts as pullback

The typing of the projection arrows gives both the cardinality (many or one) for the
particular object in the relationship, and the membership class, i.e. mandatory or optional
participation, equivalent to those in the E-R model:

� if �l is epimorphic (onto) then every S appears at least once in the relationship with
each P, i.e. its participation is mandatory, otherwise it is optional;

� if �l is monic (one-to-one) then every S appears only once in the relationship with
each P, otherwise it may appear more than once in the relationship.

The following table outlines some of the possible combinations of cardinality and

membership class for a relationship between A and C over B, illustrated with examples,

and showing how a relationship in the pullback is equivalent to a relationship in an entity-
relationship diagram. For example, N:1 in our model is equivalent to 1:N or one-to-many

in the E-R model, and o and m for the membership classes in the table are optional and
mandatory respectively.



A C B �l �r relationship

epic mon epic mon partic mapping memb.cl.

A:C A:C A C

Suppliers Parts Orders n n n n N:M N:M o o

Students Courses Take y n n n N:M N:M m o

County District Within y n y y N:1 1:N m m

Councils Councils

National Name Ident. y y n n 1:N N:1 m o

Ins. No.

Car Licence Possess y y y y 1:1 1:1 m m

Table 1: Comparison of Pullback relationships to E-R model

Note that the concept of binary relationships can easily be extended to n-ary by just

extending the product over three or more attributes.

2.2.2 Inheritance

Because our model is object-relational, then it seems wise to provide some form of inher-
itance (specialisation). We use the concept of a coproduct, which is the disjoint union
between two attributes. The diagram in �gure four illustrates an example, where Student
is the new subclass of Person.

Person Student

Person + Student

IS_A

i i
l r

Figure 4: Inheritance coproduct diagram

At the base of the coproduct cone is the Person object and the Student object, repre-

senting the additional mappings which are to be included in the new subclass. The top

of the cone is the new subclass, created via inclusion arrows from the base objects. Note
the IS A arrow added to the usual coproduct structure: it is there to show the direction
of the inheritance.

Because the operation is a coproduct, i.e. a disjoint union, then this method does not
easily handle multiple inheritance. This is because the disjoint union would exclude any

properties or arrows which appeared in both parent categories at the base of the cone.

In any case, the semantics of multiple inheritance are very di�cult to conceptualise and
thus it is not a bad thing to exclude multiple inheritance from the model. Our model



does handle a simple hierarchy though, as the top of one cone can easily form the base of

another coproduct cone.

2.3 Manipulation

Our categorical model uses natural transformations for mappings between intension-

extension object pairs (where an object is represented as an intension category and a

collection of values are represented as an extension category), giving intension-extension

subobject pairs (as subcategories), for naturally modelling the concepts of queries, clo-

sure and views. A natural transformation in category theory is a mapping between two

functors, although, as with functors, the mapping is across multiple levels, i.e. it involves

the attribute, arrow, category, etc., levels of the source and target functors. We also use

natural transformations for message passing.

2.3.1 Queries and Closure

In most object-databases, closure, which is where the result of a query can be used in a
further query, or stored back into the database schema, is a di�cult concept to handle.
For example, in C++, closure from a query would involve automatically producing a

new class intension for the resulting properties produced by the query, quite often as a
combination of properties from more than one class in the schema.

We use subcategories for providing closed objects. A subcategory is a category which
contains some of the mappings and attributes of a parent category, i.e. a form of `subset',
but on mappings as well as attributes. There are two speci�c types of subcategory. One

which contains all of the arrows for each pair of attributes in the parent category is known
as a full subcategory, whereas a subcategory which contains all of the attributes as in the
parent category is a wide subcategory. Obviously, any category is a full wide subcategory
of itself.

So, if we ensure that the results of our queries are subcategories, then because they are
essentially no di�erent from normal categories, they can be included back into the schema,

and can be queried further. In fact, the ability to query further a subcategory leads us to
a method for producing queries as a sequence of category - subcategory transformations.

A simple query in the model is that of creating a subcategory, where the only instances
which exist are those that satisfy the query condition. We want our queries to be a collec-

tion of simple query steps, i.e. a composition of category - subcategory transformations

(functors). So in e�ect, our queries (at an intensional level) are compositions of functors.
Because we want the query to map over both intension and extension, then we are in

fact mapping between functors, i.e. a natural transformation. A single step in the query
is a natural transformation, illustrated by the commuting square in �gure �ve:
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Figure 5: Natural transformation square

where D is the functor mapping source intension to extension, D0 is the functor map-

ping target (i.e. result of the query as subcategories) intension to extension, S is a mapping

between source and target intension, and T is a functor mapping source and target ex-
tension. Compositions of these natural transformations, one per stage of the query, gives
complete queries, where the query condition could be any predicate logic or calculus.

Finally, note that because pullbacks are represented in the schema as categories, then
joins can be performed by just operating on a pullback instead of a database object,
returning a subcategory which can again be used further in the query.

2.3.2 Views

Views are similar to queries, in that we want to produce some `subset' of the data currently
in the database, to give the user a di�erent perception of the schema. The only di�erences

are that rather than producing a view on a single category, we may wish it to be something
more complex than this, i.e. a combination of categories. In this case, we use the concept
of families of categories [Barr90], where a collection of categories can be visualised as one
category, so that the properties of the category are categories.

Also, because a view may be updated, then these updates need to be propagated back

to the original version of the database, i.e. the source categories. So whereas a query has
a natural transformation from source to target, we need also a natural transformation, as

a dual, from target to source.

2.3.3 Message Passing

Message passing is the ability to call a method either within an object (intra-object) or
between two objects (inter-object), which may also change the state of some property in

the category. In our model, message passing is a function between arrows, within the
category of arrows [Barr90], where the attributes in the categories are arrows, and the

mappings are between arrows. For example:

�j : mk �! mn (mk 2 CLS!i ;mn 2 CLS!j )



where CLS!i is the arrow category for the ith object in the schema, and �j is a message

from the the property (or morphism)mk in arrow category CLS!i tomn in arrow category

CLS!j .

Again, we have a natural transformation square, similar to the one for a query, where

the message is a natural transformation between properties in the category of arrows.

3 Prototyping the Model

To implement any system based on category theory requires �nding a suitable language

for handling categorical data types, and handling multi-level mappings between complex

structures. The criteria we have for evaluating languages to determine the most suitable

are [Nelson95]:

� an ability to handle functions as �rst class objects;

� a loosely typed language to reduce the di�culty in handling categorical data types;

� the concept of persistency for complex structures, such as categories;

� facilities for a high productivity rate.

Finding a language which best �ts these criteria should enable quick development of
a prototype categorical database system. Obviously, if the �rst three criteria are attain-
able, then the productivity rate should be quite high, a major advantage in developing a

prototype.
An obvious choice was to use a functional language such as ML or Haskell. Previous

research by Rydeheard [Rydeheard88, Dennis-Jones93] developed a set of categorical data
types in the functional language ML, and Duponcheel [Duponcheel94] developed a set of
categorical data types in Gofer, a version of Haskell which permits class constructors.

The problem with both systems, though, was that functional languages are too strongly
typed, and so they do not permit a heterogeneous collection of arrows to be stored easily
within a category. Both of their systems really handle only particular types of cartesian
closed categories (a category with a continuous function), which is �ne for most areas
of computing, but falls down when the requirement of a category is to store database

properties and functional dependencies, etc.
Another possibility was C++, or some other object-oriented language such as Ei�el

or Smalltalk, which may be suitable as they are based on objects, and so should give
a natural structure for representing categories. The main problem with object-oriented

languages is again in their strong typing, where polymorphism is still too strict to handle

the complexity of categorical mappings, and higher order functions break encapsulation in
object-oriented languages. Also, although an object structure can be visualised as quite
similar to categories, extensibility would be limited in that it would be di�cult to add

structure to an object once it had been de�ned.

This led to the P/FDM functional database system, developed by the Object Database
group at the University of Aberdeen. P/FDM is a semantic database system, with



object-oriented extensions. It is based on the functional data model, speci�cally that

of DAPLEX, with both a DAPLEX query interface, and a query language in SICStus

Prolog [SICStus93].

The DAPLEX interface is based on the concepts of entities and functions which map

entities to other entities, where the functions are either direct (persistent) relations or

derived methods. Queries are based on function composition. The use of entities and

functions matches quite closely the concepts required for producing a categorical system,

and the query language is ideal for handling these categorical structures. Queries and

methods in P/FDM can be de�ned in either DAPLEX or in Prolog, so the system can

be enhanced with Prolog extensions when DAPLEX alone is unsuitable. As well as this,

P/FDM contains an integral metadata level and support for constraints, which should

allow us to perform the necessary consistency checks and type handling that a categorical

database would need.

Other advantages of P/FDM are that queries can be closed, which gives us a simple

mechanism of storing results from our queries back into the database. It also supports

automatic de�nition of inverses, which gives us a solution for deriving categorical concepts
such as duals, adjoints, etc, and we can de�ne subclasses, i.e. (Student is a specialisation

of Person). Subclasses may be overlapping (i.e Student is a Person and Student is a
Sta�, for the case where a student is also employed by the university), but we do not
have multiple inheritance, which is not a problem because our categorical system does
not currently support multiple inheritance either.

Although it would appear to be advantageous to de�ne arrows in category theory as

functions in P/FDM, they are after all similar, there are drawbacks in handling arrows as
functions in the model, i.e. it is restrictive when storing them within categories, because
their source and target entities vary for each arrow and so can not simply be stored in a
P/FDM set structure. This implies that it is simpler to store arrows as entities, with two
main functions in each one, for referencing the source and target. These arrows can then

be stored in a heterogeneous list for a category, where the source and target entities have
di�erent types for each member of the set of arrows.

Another concern is that P/FDM is statically typed. For any subclasses which rede�ne
a function from the parent, we must speci�cally tell a P/FDM query to use the new
function, otherwise the parent function is called instead. This is a problem because

we need a form of dynamic binding, since attributes in the database are subclasses of

some common attribute superclass, so that arrows only need to know about the common
superclass. So it is di�cult for us to view the value of an attribute, because we do not
know directly the type of the subclass. To get round this, a Prolog method has been

de�ned which �rst �nds out the type of the subclass, and then correctly calls the value

method for that subclass, giving us a form of dynamic binding.

3.1 Implementing Partially Ordered Sets

Our method for storing categories as partially ordered sets requires storage of the powerset
of attributes, along with the majority of projection arrows (which are trivial functional

dependencies) and then adding the extra non-trivial functional dependencies. This is very
ine�cient in storage terms. So in the implementation, we only store the set of attributes,



the non-trivial functional dependencies and the key, and we alter the POSET method for

determining the key.

The Prolog method recursively subtracts permutations of the non-trivial functional

dependencies from the maximal element in the POSET (i.e. fa, b, c, dg when attributes

are fag, fbg, fcg and fdg), which gives us a list of powerset members which can be the

key, and then by examining the minimality of these elements, we can determine which is

the primary key, or which are the candidate keys, if we have a choice. For example, if

the attributes are as above, and the functional dependencies are fa, bg ! fcg and fb, cg

! fdg (note, this is a pseudotransitivity [Rossiter95] because we can infer that fa, bg !

fdg) then the sequence of subtractions is:

fa, b, c, dg - (fa, bg! fcg) = fa, b, dg (we remove the target)

fa, b, dg - (fb, cg ! fdg) = fa, b, dg (we can not complete this subtraction, as b, c

and d are not in the key)

So, from this permutation, fa, b, dg is the key.

For the second permutation we have:

fa, b, c, dg - (fb, cg ! fdg) = fa, b, cg
fa, b, cg - (fa, bg ! fcg) = fa, bg

From this second permutation, fa, bg is the key, and it is the in�mum (as fa, bg is
minimal compared to fa, b, dg), so the primary key is fa, bg as we would expect.

In this algorithm, we have a straightforward test to determine whether the object
conforms to Boyce Codd Normal Form. The simple test is that the sources of the non-
trivial functional dependencies (i.e. fa, bg and fc, dg) are candidate keys. In our example,
this is not true, as fc, dg is not a candidate key (fa, bg is the only key, and is therefore
the primary key). Our algorithm does not pretend to be highly e�cient compared to

previous algorithms [Osborn79] (where Osborn's algorithm is based on determining the
set F+ [Ullman88] of all functional dependencies to see whether a relation is in BCNF) for
testing whether a relation is in BCNF, but our algorithm also determines the key whereas
previous work does not usually give the key.

3.2 Manipulation

To complement the categorical data types, we need to add some form of manipulation, i.e.

queries, closure, views and message passing, as well as some system for actually setting
up a database. The intention is that the interface to the user will consist of a collection

of pre-written Prolog methods for creating objects, etc. and that the eventual query

language should look no di�erent to DAPLEX syntax, so that the user just needs to learn
DAPLEX queries, with the required categorical extensions.

There may be a di�culty in implementing natural transformations, which will be

needed for most of the database manipulation parts. This is because the mapping is

between functors and across multiple levels, i.e. the mappings are at the object, arrow

and functor level, which may be di�cult to represent in a DAPLEX schema, or in many

other currently available languages [Nelson95].



4 Conclusions

We consider that our work is a positive contribution towards solving the three main prob-

lems in object-oriented databases simply by subcategories and natural transformations in

category theory, and that our using P/FDM provides the necessary functionality for ac-

tually implementing this categorical model. The implementation is a non-trivial problem

because category theory constructs do not map in a direct manner onto the constructions

of current programming languages, but the combination of DAPLEX and Prolog appears

promising.
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