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Abstract

The Acoi project provides a large-scale experimentation platform to facilitate studies in the area of indexing
multimedia objects and their subsequent retrieval. The index model is based on assembling the results of feature
detection algorithms into hierarchical structures to classify the objects. This paper provides an overview of
the Acoi architecture and the Feature Detector Engine (FDE) model. Central to its design is a grammatical
description of the feature relations to classify the multimedia objects and to steer their detection and storage. Its
role is informally introduced.

1 Introduction

Searching relevant objects in a large scale multimedia database on the basis of selective properties and realistic
similarity measures has become one of the key challenges in computer science. It has gained this position in recent
years, due to the abundance of material accessible through the World Wide Web, the progress in digital imaging
and audio processing.

The solutions available are largely based on catalogues, which are either constructed manually, as in the
case of Yahoo (http://ipix.yahoo.com), or derived from the text surrounding the objects of interest, see AltaVista
(http://www.altavista.com). A significant step towards disclosing the information contained in multimedia objects
can be found at the homepage of Magnifi (http://www.magnifi.com). It provides an integrated solution to index a
multimedia database using a combination of text and image feature indexing techniques.

Not withstanding the success of catalogue systems to support the community at large in finding information,
progress in the area of automatic indexing multimedia objects has been rather limited [JAIN97]. The challenge
remaining is to determine those features that adequately capture a concept — invariant to the recording method —
and that aid subsequent retrieval. The issues to be dealt with are: ”What portion of a photograph should be used
as a thumbnail?”, ”What fragment of an audio stream acts as index entry?”, ”How to support visual browsing in a
large collection of images?”, ”How to classify two images in a concept hierarchy?”,...

The Acoi approach

The Acoi1 project2 has been initiated to develop a large-scale experimentation platform to facilitate studies in this
area. The prototype has been set-up to accommodate>1M images,> 50K audio files, and>10K video streams.
The projects main contribution and innovation is a sound model and effective system architecture to accommodate
a variety of algorithms dealing with extracting properties from multimedia objects for indexing purposes. This
paper reports on a part of the system design, which has been driven by the following requirements:

� It should provide access to globally stored multimedia objects.

� It should be dynamically extensible with indexing tools.

� It should support both black & white box feature detection algorithms.

� It should accommodate a broad spectrum of classification schemes.

1Amsterdam Catalogue of Images
2The Acoi project is funded through the Dutch SION project ”Amis” and Telematics Institutes project ”Digital Media Warehouses”.



� It should provide proximity and partial query answering schemes.

Their rationale can be summarized as follows.
Given the sheer size of the multimedia database, it is out of the question to retain a substantial fraction at the

experimentation site. Rather, the Acoi system is the intermediary for a group of researchers to experiment with
information stored at remote locations.

Dynamic extensibility is needed to support experimentation by specialists in the domains considered. The
system permits a new feature detection algorithm to be linked into the system at runtime. It causes the system to
quickly deploy it against easily accessible objects, i.e. those already in the cache.

Black box feature detectors are (proprietary) software tools with only a loose interaction with the Acoi system.
They are generally obtained as binary executables only and limited knowledge on their internal behavior can
be used to steer the indexing process or improve query responsiveness. Contrary, white-box feature detectors
are described as mathematical expressions over easily derivable (or pre-calculated) object features. Often they
constitute query views over the multimedia database itself. They lend themselves for optimization under control
of an optimizer.

To improve cross fertilization of feature detection schemes, the system should support coexistence of both
manual, semi-automatic, and automatic classification schemes. Manual classification schemes alone does not
work, because it does not scale. It should be used in those cases where (semi-)automatica classification has already
reduced the set to a few hundred elements.

Querying a multimedia database stresses the traditional computational model in a DBMS, because its indices
are never complete and it is impossible to wait for the indexing process to finish. The prime reason being that most
of the information sources are stored remotely and it is too expensive to access them repeatedly. Furthermore, the
decision model behind a query expression — the predicate holds or not — should be relaxed to retain answers
based on probabilistic expressions.

The Acoi project addresses these issues with a flexible architecture and sizable demonstrator.

Related research

Multimedia (database) indexing issues are studied at various places [ARYA96, GUPT97, SPIE95]. In the area
of image analysis Photobook[PENT94], WebSEEk[CHAN97] and QBIC[FLIC95] illustrate that within a limited
domain and relatively small databases it is possible to retrieve similar objects using easy computable image prop-
erties, such as color histograms.

A major research force has been triggered by the US Digital Library Initiative. The Initiative’s focus is to
dramatically advance the means to collect, store, and organize information in digital forms, and make it available
for searching, retrieval, and processing via communication networks – all in user-friendly ways. For example,
the Berkeley Digital Library project aims to develop technologies for intelligent access to massive, distributed
collections of photographs, satellite images, maps, full text documents, and ”multivalent” documents. It in-
volves researchers of the Computer Science Division, the School of Information Management & Systems, and
the Research Program in Environmental Planning & Geographic Information Systems, as well as participation
from government agencies and industrial partners. Stanford University participates in this program with a focus
on inter-operation mechanisms among heterogeneous services. Carnegie Mellon University deals with content-
based retrieval of video. Progress on various aspects of the Digital Libraries are published in [DL96, DL97] and
http://dli.grainger.uiuc.edu/national.htm.

The remainder of this report is organized as follows. In Section 2 we introduce a model to support a broad spectrum
of incremental multimedia indexing. Section 3 places this model inside a system architecture. We conclude with
the current status of the Acoi project and an indication of the challenges ahead.

2 Acoi Detector Model

In this section we present a motivational example, followed by an informal definition of the Acoi data- and execu-
tion model.

2.1 Motivational example

The Acoi detector model has been developed to provide a concise description of the structure and organization of a
multimedia index database. The model is based on the observation that indexing an arbitrary multimedia object is



intuitively equivalent to deriving a grammatical structure that provides a name space to reason about and to access
its components.

A small example will make this clear. Consider your favorite photograph referenced by a label on a photo disc
and the task to index it from your multimedia album. Then the following steps are likely to occur. First, you enter
the photo id# as an element in a classification tree under the headeralbum.graphics - it is a graphics object
(syntax)- and under the headeralbum.photo - it also belongs to your photo album (semantics). Second, you at-
tach the labelsalbum.photo.creation-date , album.photo.location , album.photo.caption
and classification properties - it also belongs to the class of family photos. Finally, you might pan portions of
the photo to update the portrait galleryalbum.people . These actions lead to a hierarchical structure of the
components associated with a single multimedia object, as illustrated in Figure 1.
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Figure 1: Complex MM object structure

You can also interpret this process as an extended parsing activity. Given thephoto , date ,location ,
caption , andset of faces , the structure derived forms a parse tree for an element accepted by the gram-
mar for your album. The bottom of the parse tree contains lexical atoms belonging to a particular base domain:
graphicsType, photoType, dateType,� � � . Unlike traditional parsing there is no a priori fixed sequence from which
the lexicals are consumed. The ”parser” works its way through lexicals created dynamically, e.g. questions are
asked and faces are derived in the process.

2.2 The Feature Grammar

The ultimate goal of the Acoi project is to enable (semi-)automatic indexing a large multimedia database. The
starting point for this process is a collection of multimedia objectsM , whose basic properties are already obtained
with a Web robot and stored in a Monet[BONC95, BONC98] database using the schema in Figure 2. Further
indexing this database amounts to addition of binary relations which carry values to classify the collectionM in
new dimensions.

For this process we borrow concepts and techniques from formal language theory. To recall, we describe a
language of properties using a grammarG = (V; T; P; S) whereV is a collection of variables,T a set of terminals,
P productions of the formV ! (V [ T )�, andS the start symbol taken from V. A sentential form� is a string of
terminals and variables, such thatS

�

! �. The collection of parse trees is denoted byPT .
A sublanguageL(Gw) is described with the sub-grammarGw = (Vw; Tw; Pw; w), taking a consistent subset

of the corresponding components ofG. It describes the structure of sub-sentences in the languageL(G).
The terminalsT are ordinary typed lexicals. The built-in set of types encompasses the traditional programming

typesint � � � str . Furthermore, type extensibility of Monet provides for more complex types, such asimage .
The terminals are collected into token sequences or sentencesTS = [t0(v0); � � � tk(vk)] whereti 2 T is an atomary
type name, andvi a value indomain(ti). A token sequencets belongs the languageL(G), i.e. ts is parsed against
grammarG, if there exists a sequence of productions such thatS

�

! ts.
Turning back to our main objective, we consider a feature database a collection of sentences with indexing

values. Their parse tree denotes a hierarchical structure and provides a name space to access and manipulate
components. Actually, there exists a natural mapping from sententials to complex objects. In particular, the
(non-)terminals are mapped into object attributes; repetition into a list constructor; and alternatives as elements in
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Figure 2: Acoi Database Core Schema

abstract classes. A prime advantage of our grammatical approach is its conciseness in specifying a large collection
of classes. When a class description is needed for application interfacing, it can readily be derived and refined with
application specific behavior.
Definition 1. Forv 2 V [ T the classCv denotes the class of complex objects equivalent to the sub-languageGv .

Feature detectors fit in this framework as operations associated with non-terminals, which massage a token
sequence to steer correct parsing of the corresponsing sublanguage. For this they may inspect the parse tree under
construction (its sentential form).
Definition 2. A feature detectord 2 D � V is a function that maps a token sequencew 2 TS intow0 2 TS using
its parse treedt, such that the head ofw0 is a sentence in the sublanguageGd.

A feature detector may involve user interaction to identify the element inF or even extendF in the classifi-
cation process. For example, the detector could ask the user explicitly for the classification information using a
dialogue initialized with a set of choicesask(”car”,”house”,...) or to let the user draw geometric structures on the
screen to identify the portions of interest, e.g.faces.

Ordinary functions differ from the feature detectors in that the information derived is not kept permanently in
the database for recall. As such, they are also total functions instead of partial functions (over the database extent).

Since detectors may be introduced long after the database has been created, the Acoi indexing process neces-
sarily is incremental, because the source may not be available at all times. This leads to two sub-classes for any
classC as follows:
Definition 3. The object class indexed by feature detectord is denoted by

+

Cd. Those not yet indexed are denoted

by
*

Cd. At any time classCd =
+

Cd [
*

Cd.

2.3 An example

To illustrate, consider the feature grammar defined in Figure 3. The top part defines atoms (typed terminals) and
feature detectors. Detectoravatar is a white-box detector; its behavior is defined by an expression understood
by the Acoi system. The other detectors are black box detectors, known by their name only. It is up to the user
to supply an implementation. The body may inspect parse tree - it provides access to contextual information- and



# Atoms
%ATOM image;
%ATOM str protocol server, directory;
%ATOM str basename, extension
%ATOM int width, height;

# Detectors
%DETECTOR url;
%DETECTOR picture;
%DETECTOR icon(image);
%DETECTOR avatar(thumbnail) ? thumbnail.picture.width=40

&& thumbnail.picture.height=60;

# Production rules
mmo: url category;
url: protocol server directory* basename extension;
category: thumbnailj avatar;
thumbnail: picture icon;
picture: image width height;
icon: picture;

Figure 3: A Feature Grammar Example

change the token sequence to assure proper continued parsing.
The bottom part contains a grammar for a hierarchical structured feature space. An objecto that is known to

obey this grammar has an implied syntax tree where the edges are labeled with the names of the corresponding
production rules. Components of this parse tree can be accessed with regular (path) expressions.

Unlike traditional grammars, alternation betweenthumbnail andavatar is not exclusive. Both produc-
tions describe alternate views on the same underlying object. The category rule succeeds when for all alternatives
that succeed produce the same token sequence for continuation. An alternative that fails is further ignored.

Observe that semi-structured databases follow the same pattern, a document is a hierarchical composition
whose structure is conveniently described by a grammar (e.g. SGML, HTML, XML, Hytime). However, in Acoi
we expect an a priori geven grammar and do not derive the schema on the fly from the documents in the database.

2.4 Execution model

An informal description of how the feature grammar is used to obtain the index runs as follows (using the exam-
ple feature grammar in Figure 3). At some point in time, a string (e.g. ”http://www.cwi.nl/� monet/lady.gif”)
is inserted in the token pool from which the grammatical structure is parsed. The start nodemmocreates a
parsing context that ultimately leads to acceptance or rejection of the object as ammoobject. This proof is at-
tempted by proving the right hand side of themmorule, which starts with calling theurl detector. It searches the
pool for a string and breaks it into components as follows:[protocol(http), server(www.cwi.nl),
directory( �monet), basename(lady), extension(gif)] and the detector returnsSUCCEED. The
modified token pool can be consumed by the parser looking for a valid url. Themmorule can then proceed with
thecategory proof with two alternatives,thumbnail andavatar , both are valid continuations.

Thethumbnail rule triggers the detectorpicture . Its body has access to the complete parse tree built so
far. It uses this information to access the file being referenced and determine its type from the extension component.
Upon success (it is agif file) it opens the correspondingfile and generates atoms[image(cache/lady.gif),
width(85), height(250)] pushed in front of the token queue.

Subsequently theicon detector is called with the most recentimage object as parameter. It derives a
small icon, leaving it behind in the token stream for consumption as[image(cache/lady.icon.gif),
width(75), height(75)] . Whenthumbnail proof has ended successfully, the category proof proceeds
with the next alternative,avatar .

Theavatar is an example of a predicate-based detector. Thethumbnail argument sets the context. But
there are two pictures available in the parse tree (thumbnail and icon). Therefore, the path should explicate the
context to locate the correctwidth andheight .



Thecategory rule succeeds if at leastthumbnail or avatar reports success. When the completemmo
rule has been proven the original string object has been parsed into a hierarchical structure containing classification
and feature information.

This execution model gives a systematic parsing method to classify a new object. The feature detector engine
uses this method to steer feature detector behavior. Basically classification is based upon the success or failure of
parsing the token sequence. The detectors merely assure that the proper classification information is available just
in time.

3 Architecture Overview

An overview of the Acoi architecture is shown in Figure 4. This section offers a short description of the role and
approach taken in each component.
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Figure 4: Acoi Architectural Overview

3.1 Web Robot

The first component designed and implemented is the AcoiRobot. The AcoiRobot traverses the World Wide Web
in search of multimedia objects. Some basic object features are computed and surrounded HTML text is used to
derive index terms. These basic features and index terms are used to provide an initial parse tree for further feature
detection. The database scheme for this information is shown in Figure 2.

Related to the AcoiRobot is the AcoiSearch interface which can be used to retrieve multimedia objects from
the database using only this basic information. AcoiSearch provides an AltaVista like service, e.g. retrieval based
on keywords.



3.2 User Interfaces

The primary interfaces to the Acoi system consists of Java applets. AcoiView is an applet to inspect and modify a
feature grammar. It contains administrative functions to manage the underlying database and provide simple query
primitives to inspect resource consumption.

AcoiQuery is a Java applet to formulate a feature grammar query. It consists of two parts: the target- and
restriction-grammar. The former is a subset of the feature grammar augmented with expressions to derive the
information before being displayed. The restriction-grammar is a subset of the database schema, augmented with
predicates to derive the collection of object considered for retrieval.

AcoiReport is a Java applet to browse the results of a query. It uses a straightforward mapping from target
grammar to HTML.

3.3 Database Management

The core compilers and utilities are ordinary Unix programs. AcoiSchema takes a feature grammar and derives the
underlying database structure. For Monet this involves generation of a collection of binary relations to manage the
database. This mapping retains the names from the grammar to ease access to the database using non-Acoi tool
sets, such as direct querying with the Monet MIL processor, or a SQL interpreter.

AcoiSchema also takes care of adapting an existing database. In that case the program takes the old and new
grammar to produce updates statements for the database. This include invalidating the classifications and feature
values inconsistent with the new grammar.

3.4 Detector Libraries

The application interfaces for both C and Java detector implementations are derived from the feature grammar
using AcoiDetector, AcoiEngine, AcoiLib.

AcoiDetector generates a skeleton file for all detectors in a feature grammar. It should be extended by the user
with bodies to derive the feature values of interest and to make them known to the token pool for the parser. The
detectors should be designed as memoryless devices; there is no causal order between successive calls. Moreover,
the code should be thread-safe, otherwise it will be run in a separate process and communication is set up using a
plain ASCII stream.

AcoiEngine generates a parser from the feature grammar. Linked with the AcoiLib library and detector bodies,
it produces a self-contained feature detector engine. It can be called from the command line. Its output is a
sequence of updates on the Monet database.

AcoiLib constitutes a collection of binaries to ease development of detectors. It provides functions to access
the parse trees, to modify the token pool, and general utilities for debugging.

3.5 The Feature Detector Engine

The Feature Detector Engine (FDE) is a multi-threaded process derived from the feature grammar and in charge of
updating the feature database within the resource limitations given. It provides a harnass for multiple AcoiEngine
parsers to update the database in parallel.

The FDE responds to insertions and modifications of the data by AcoiRobot, because such updates may lead to
starting a (partial) recomputation of feature values and reclassification of multimedia objects. Furthermore, FDE
provides management functions to (de-)register detectors and to keep track of performance.

FDE maintains a small cache of multi-media objects, such that experimentation with new detectors can be
accommodated without excessive load on the network. Once the algorithms have proved stability, the scope of
applicability of a feature can be extended to cover larger domains.

3.6 The Feature Query Engine

The Feature Query Engine (FQE) provides a harnass for multiple query streams, described by target- and restriction-
grammars. A complicating factor is that the complete answer set can’t be determined in finite time for several
reasons. First, the database is constantly updated by AcoiRobot with new information about multi-media objects
on the World Wide Web. Likewise, the FDE constantly updates the database with indexing information obtained
from the feature detectors. Finally - more challenging - the raw information is not likely to be available to aim
indexing and retrieval. Downloading it for feature detection should be scheduled such that maximal information is
extracted each time it is accessed.



These factors require FQE to be able to provide partial query answers and to provide quality figures for answers
returned. An assessment (and prediction) of the cost to access another set of objects is also highly relevant for the
user, before he calls upon downloading all images over the net for a simple detector experiment.

4 Implementation status

The AcoiRobot has been implemented. It obeys the robot exclusion protocol and has collected so far a candidate
list of 200K image urls. As soon as the hardware platform has been installed, the candidate list is explored. This
base database will be made available for public use as soon as possible using the AcoiSearch demonstrator, a kind
of Alta Vista applications.

Prototype AcoiSchema, AcoiEngine, and AcoiDetector programs have been constructed. Demonstrator pro-
grams are currently being developed along with the necessary documentation. The interaction with the database is
loose. Updates are cast intoASCII files of Monet commands. Moreover, no access is provided to partial parse tree
already stored in the database. The envisioned harnass FDE with tight database coupling will be developed after
our first experimentation with the envisioned architecture has produced more insights in its requirements.

The AcoiView applet has been developed in Java 1.1 using the Swing library. The applet helps the user to
define a correct and complete feature grammar.

5 Summary and conclusions

We have introduced a novel method to index a large multi-media database with user-defined features. It is based
on sound parsing techniques with a keen eye towards support for incremental parsing. Actually, the database is
considered a large collection of parse trees, readily available for querying as a database of complex-structured
objects.

A large experimentation platform is currently under construction to validate the approach taken. It is scheduled
for access in the summer of 1998.

The prime areas of research are the formulation of the query language and the two harnass programs, FDE and
FQE, to handle the intrigate issues raised by accessing a highly volatile and distributed store.
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