Project CYCLADES

Meeting, Crete, May 7 – 11

Minutes

WP2: System Specification

· WP1 (User requirements)

· From 01-02-2001 to 31-03-2001

· Deliverable due 30-05-2001
· WP2

· From 01-04-2001 to 31-07-2001

· Deliverable due 31-08-2001
· Task 1: functional specification

· From 01-04-2001 to 30-04-2001

· Task 2: architectural specification

· From 01-05-2001 to 31-07-2001

Work Agenda

· Questionnaire analysis

· Fundamental issues: like

· Use of Free Software only?

· Which are the archives dealt with by Cyclades?

· One Cyclades system or several instances?

· Other “high level” questions?

· Functional/Architectural specification:

· Methodology: presentation by CNR

· Miscellaneous

Functional/Architectural specs: A methodology (UML like)

Identification of

· Actors
· someone or something which interacts with the system

· Relationship between actors: generalisation

· Use Cases
· represents a complete functionality as perceived by an actor

· a set of sequences of actions a system performs that yield an observable result of value to a particular actor

· relationship between actors and use cases: association

· relationship between use cases: extending, uses, grouping

How to describe

· Actors
· plain text

· Use cases
· Complete description in plain text

· Work flow (activity diagram)

· Activity diagram: Captures actions and their results. The focus is on the work performed with respect to a chosen granularity of atomic actions.

Functional specs

· Step 1: Identification of the Cyclades actors (GMD doc)

· raw definition and glossary update

· identification of relationships: actor/actor

· Step 2: Identification of all Cyclades Use cases (GMD doc)

· raw textual description of the use cases

· identification of relationships actor/use case, use case/use case

· glossary update

· Step 3: complete description of the use cases through activity diagrams (use case work flow) w.r.t. a certain granularity of detail

· Step 4: use case realisation.
· Transformation of steps and actions described in the activity diagram in classes, operation in classes and relationship between classes
Architectural specs

· Step 5: grouping classes together into Cyclades services

· Note: the interaction between services (sequence diagram spec) is determined by the interaction between the classes within the services

· Step 6: communication protocol spec

· Step 7: All elements are available for

· Service functionality specification

· Service to service relationship
· User to service relationship
Single User Use Case

The single user becomes a user of the system.

(1) Register

(2) Login

(3) View and edit user information

The single user creates an environment where to store relevant records.
(4) Create folders and subfolders

 Folder and record management (cf. below)

The single user describes the domain(s) of her interests.

(5) Edit folder content description (queries, description)

 (Associate (disassociate) a virtual collection to (from) a folder
)

 (Postponed to other use case: Create and modify a virtual collection;

 Remove a virtual collection from a folder; Delete a virtual collection
)

The single user gathers records.

(6) Ad-hoc/ personalized browse/ search collections, collect relevant records

 and store in folders, add query to folder

(7) Store relevant records in folders/ query refinement

(8) Add a query to folder ('current' and/or home)

(9) Receive recommendations from the system (push/pull)

The single user assesses records.

(10) Rate a record
 (Perhaps not in private folders)

(11) Annotate a record
 (Perhaps not in private folders)

(12) Show list of communities (with name, description and contact

 information)
(13) Get aware of visible groups ranked by ‘relevance’

(14) Subscribe to a community (e-mail or other)

Folder and record management

· Delete a record

· Delete a folder

· Move, copy a record

· Split a folder

· Merge two folders

· Have folder structure managed by the system
User types

· Single user
· Community user (Admin, Member)

· Project user (are invisible to non-members)

· Archive registrar

· Collection owner

Folder types

· Private

// contain only metadata records

· Community
// contain only metadata records

· Project

// may contain other files

Community User Use Case

The community administrator sets up a project community environment
.

(1) Create a new community/ group folder (enter description, flag if other

 persons can subscribe without administrator's permission)

(2) Manage, invite and kick out members to the community

(3) Edit access rights for the community

(4) Make group folder visible

Community members work within the community environment.

(1) Register after invitation (subscribe otherwise)

(2) Login

(3) Leave community (i.e., community folder) (by deleting community folder

 in personal environment)
(4-9) Including folder management of single user use cases (restricted by

 access rights)

(10) Rate records (restricted by access rights)

(11) Annotate records (restricted by access rights)

Community members get aware of actions in community environment

(12) Edit awareness report preferences

(13) Catch up

(No use case: View action icons; View action history)

Community members contact other individuals/communities with similar interests.

(14) Create and add comment to discussion forum

(15) Online chat (optional)

Project Administrator creates project environment

(1 – 3) οf community
Project member ‘works’ with a project folder

(1 – 13) Of community without subscription, but with extension of rate/

 annotate to all objects in a project folder

(14) Upload documents to project folder

Archive registrar

(1) Register archive

(2) Edit archive registration data (description)

(3) Unregister archive (delete archive)
Collection Owner

(1) Create collection

(2) Edit collection description

(3) Delete collection

Activity Diagrams

Single User Use Cases: (1), (2), (3), (5), and Folder management

Single User Use Cases: Search/Browse (6)-(8)

Single User Use Cases: Search/Browse
with Folder

Single User Use Cases: Search/Browse
with Push and dynamic updates

We will opt for the pull scenario at least for the new users when they first sign up.

Single User Use Cases: Recommendation

Recommendation dimensions:

1. What is recommended?

· Collection

· Record

· User

· Community

2. What is analyzed? (user analysis)

· Explicit ratings

· Folder profile

3. What is the source of recommendations? (source analysis)

· Records

· Ratings

4. Presentation

· Distributed (folders)

· Centrally

· Centrally with link to folder

Archive Registrar Use Case

Archive Registrar Use Case: Edit Archive Registation Data

Collection administrator Use Case: Create Collection (
User Collection Registerer)

Access Service

The Access Service has 2 classes, AccessService and Archive. The persistent data of this service are the registered archives. For the AccessService class, a number of methods (initRegistration, registerDescription, registerMirror, unregisterMirror, unregisterArchive) was listed that are to be used only by the graphical user interface of that service, but not by other services.

Classes

Archive

Slots:

id

// key

metadata

url

mirrors [URL*]

schemas [(name, url, fieldList, supportedFlag)*]
// Schema_list

Access Service

Slots

id

// key

archives [Id*]

// archive_list

Schema: Name, URL, Field list

Query: Conditions, Source schema
Functions

· archive_ID init_registration (archive_URL)

· void set_archive_metadata (archive_ID, archive_metadata)

· void set_archive_mirror (archive_ID, URL)

· void get_archive_mirrors (archive_ID, URL)

· void delete_archive_mirror (archive_ID, URL)

· void unregister_archive (archive_ID)

· archive_list list_archives ()

· schema_list get_archive_schemas (archive_ID)

· archive_metadata get_archive_metadata (archive_ID)

· record_list search (collection_ID, query, target_schema, number_requested)

· record_list get_record_list (record_ID_list, target_schema)

Collection Service

The Collection Service is modeled after the Access Service and has 2 classes, CollectionService and Collection. The persistent data of this service are the registered collections.

CollectionService

Slots:

id

collections [Id*]

// Collection list
Collection

Slots:

id

// key

name

// for init

textual description

archives [Id*]

// List of archives ID

filteringQuery

searchSchemas [Schema*]

// Searchable subschema list

displaySchemas [Schema*]
// Displayable subschema list

(other criteria?)

Search and Browse Service

The Search/Browse Service has one class, SearchAndBrowseService. This service has no persistent data.

SearchAndBrowseService

· ID
· Active_folder_ID

Collaborative Work Service (Folder Service)

The Collaborative Service has 2 classes, CollaborativeWorkService and Folder. The persistent data of this service are the folders that users create and the records and queries that users store in this service.
CollaborativeWorkService

Slots:

id

folders [Folder*]

// Folder ID list

Methods: (as per Thomas Kreifelts)

void saveQuery(folderId, query)

void saveResults(folderId, results [Record*])

Record* listFolderRecords(folderId)

void recommendedRecords(folderId, records [Record*])

void recommendedUsers(folderId, userIds [Id*])

void recommendedCollections(folderId, collectionIds [Id*])

void recommendedCommunities(folderId, communityIds [Id*])

Folder

Slots:

id

// key
Name

associatedCollections [Id*]

// Collection ID list

associatedQueries [Query*]

// Query list

records [Record*]

// Record list

parent

// Parent_folder_ID

children [Id*]

// Child_folder_ID_list

profile

…

Personalization Service (Recommendation/ Filtering Service)

The Personalization Service has a class PersonalizationService and possibly FolderProfile and/or Filter. The persistent data of this service are possibly the folder profiles and/or the filters.
PersonalizationService

Slots:

id

folders [(folderId, folderProfileId, filterId)*]

Methods: (as per Thomas Kreifelts)

Record* filteredSearch(query, collectionId, maxNo, folderId)

Rating Management Service

The Rating Management Service stores ratings (also implicit ratings) and produces profiles based on these ratings. It has 2 classes, RatingManagementService and Rating. The persistent data of this service are the ratings including the implicit ratings.
RatingManagementService

Slots:

id

ratings [Rating*]

// Rating list

Methods: (as per Thomas Kreifelts)

void addRating(docId, ratingValue, actorId, timestamp, actorType,

 folderId)

void changeRating(docId, ratingValue, actorId, timestamp, actorType,

 folderId)

Profile userProfile(userId)

Profile documentProfile(docId)

Rating

Slots:

id

docId

value

// Rating value

actor

// Rating actor ID

timestamp

// Date

actorType

// Type ID

folderId

User Service

This service was only introduced shortly to cover the register and login use cases. It has 2 classes, UserService and User. The persistent data of this service are the registered users.
UserService

Slots:

id

users [User*]

User

 Slots:

id

userInformation

It is clear that the existence of more classes is implicitly assumed above. These classes include Record, Schema, Query, Profile, to name a few.

Inter-Service Communication

Cyclades System – Task Assignment

Retrieve Ratings

Submit e-mail address

Send registration

e-mail

Submit registration data

Login

Edit user information

Edit private folder description

Managing folders (move, delete)

Managing folder contents

(move, delete)

Single

User

Save query

Save relevant records

Save query

Save relevant records

Browse attribute values

Browse schemas

Browse collection information

Look at results

(from history/folder)

Submit query

Select existing query

(from history/ folder)

Edit query

Select collection (from collections associated to the folder)

Initiate process from active folder

Login

Specify name, textual description, and set of criteria (archives, filters relating to whole archive or single records)

Show the schema fully available DC, possibly also MARC

Select schemas

Derive subschema for querying and output

Create collection

Produce collection metadata, list of archives, filtering query, description of collection, subschemas, subschemas for output

Folder management

Become aware of changes

Single

User

Single

User

Single

User

Folder management

(2)

(3)

(5)

(1)

GUI Cyclades

Mediator

User Service

Personalization Service

Collection Service

Collaborative Work Service

Search and Browse Service

Rating

Access Service

DB

UNIDO

UNIDO

FORTH

GMD

GMD

CNR

CNR

Submit with resp. to folder topic

Filter

Save query

Save relevant records

Browse attribute values

Browse schemas

Browse collection information

Look at results

(from history/folder)

Submit query

Edit query

Select existing query

(from history/ folder)

Select collection (from collections associated to the folder)

Initiate process from active folder

Filter

Submit with resp. to folder topic

Browse attribute values

Browse schemas

Browse collection information

Look at results

(from history/folder)

Submit query

Select existing query

(from history/ folder)

Edit query

Select collections (from collections associated to the folder)

Initiate process from active folder

Submit and find NEW with resp. to topic

Single User

with:

Explicit ratings,

Folder structure

Get recommendation (record, user, community, collection)

Archive

registrar

Describe content (archive metadata):

name of archive

language

full-text availability

publisher

topics covered (incl. Ontology)

temporal coverage

content media type(s)

plain text description

For each metadata format:

Acquire DTD

Give additional schema info

View Metadata format

Enter URL

Archive

registrator

Edit Content Description

Edit Metadata format

Collection Owner

Records, Users, Communities, Collections

Recommend

Query

Submit query

Browse attribute values

Submit query (ad-hoc)

Folder ID, Record list

Save List of Records

Folder ID, Query

Save Query

Collection ID

Browse Collection

Folder ID

Folder ID

Queries?

Folder ID

Collection?

Personalization Service

Rating Service

Access Service

Collection Service

Search & Browse Service

Collaborative Work Service

Collection ID,

Folder ID, Query, Number of Records

Folder ID

List Folder

Records

� 	This is in parenthesis because it was mentioned, but no use case was elaborated.

� 	This is in parenthesis because it was mentioned, but no use case was elaborated.

� 	Records — i.e., metadata. Rating will probably not be supported for private folders.

� 	Records — i.e., metadata. Annotations will be supported depending on the progress of the realisation of the other use cases.

� 	The meta-data of communities are visible to non-members.

PAGE
20

