OBJECT ORIENTATION IN DATABASE INTEROPERATION

CASE STUDY OF VERSION CHANGED RELATIONAL DATABASES

M Dixon*, System Development Group, Faculty of Information Systems,
Beckett Park, Leeds Metropolitan University, LEEDS, LS6 3QS

and

John Kalmus, Data Engineering Group, Systems Engineering Division,

Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX

* also Visitor to System Engineering Division, RAL.

ABSTRACT

This paper focuses on semantic issues that arise during non update querying of
interoperating relational databases; the semantics are classified according to their
location in a five layer information expressivity architecture. The system used as a
case study is an operational engineering fault logging system which has been
significantly modified to meet user requirements; however for tactical planning
purposes information from the old and new systems need to be analysed together. This
paper discusses the possible use of object oriented techniques and data models for the
interoperation of relational database systems.

INTRODUCTION
Theoretical Framework

Coulomb and Orlowska [CouOrl93] have shown that the assumption of design
autonomy for database federations was flawed; it founders on semantic heterogeneity.
Additional semantic information generally needs to be added to the schema to achieve
interoperaton. They have identified version control as a key issue when schema
definitions are updated for what they classify as public reporting systems. They also
assumed that such systems were likely to be based on the relational model in the short
to medium term.

Jeffery [Jef&al94] proposed that the semantics of interoperating systems could be
classified in a five layer information expressivity model which allows us to segregate
database model features from business rule features at appropriate layers.

Saltor [Sal&al91] has established criteria for a canonical data model for the case of
several databases interoperating in a federation [SheLar90]. It was shown that one
based upon an object data model would be superior to one based upon the relational
model both in terms of its expressiveness and of its semantic relativism. An object

1.2

1.3

131

1.3.2

1.4

database standard has now been published by the Object Database Management
Group [Cattell94].

Strategy for Study

The system we are using for the case study is a real airport maintenance system, based
upon a relational database management system. The system has been substantially
modified to meet user requirements.[DixKal94]

Following on from ideas at the 6th EDRGW we are using the 5 layer information
expressivity model to classify the new semantics arising from:

1) addition of a new business rule in the later version or by the removal of a business
rule present in the older version

2) a change in the business rule between versions

3) the addition of semantics to the reconcile schema definitions in order to obtain
interoperation

4) the addition of semantics to a query to enrich the interoperation
5) a restructuring of the schema changing the atomicity of the attributes

It is clear that many of the systems that will be interoperated will be based upon the
relational data model running on relational database management systems
[HurBriPak94]. We are examining the appropriateness of using an object models for
interoperating this type of system. The issue is whether an object data model can give
a significantly better description of the semantics for its use to be invoked in a purely
relational environment or will the relational model give good enough modelling.

Case Study
The case description

In the Appendices we give the entity, attributes, and attribute definitions for the old
(Appendix 1) and new (Appendix 2) versions of the fault logging system as
implemented. Conceptual models are given in Appendix 3. Further details of the case
study may be found elsewhere [DixKal94, Framp86]. In a previous paper we selected
two examples from the case for study in order to show how the 5 layer information
expressivity model allows us to focus at the appropriate information level [DixKal95].
One example has no change to the schema but there is a substantial change to the
business rules. For the other example the schema are radically different in the different
versions but represent the same business rules.

Reasons for wanting interoperation

Here it is important to recall that the systems were developed and installed to meet
the operational requirements of the maintenance crew; the lifetime of most faults is
measured in hours rather than weeks. Analysing the information across different
versions is seen as an additional requirement used to provide
a) historical continuity within a Terminal
b) patterns of reliability across the airport
c) tracking of plant transfers between Terminals
d) comparison of performance on maintenance effectiveness

OO for Relational Legacy System

Suppose we want two relational databases to interoperate at the non update query
level then does the OO data model provide a better canonical data model than

relational? Here we are considering the case of a relational database that has been
upversioned and then we want to query both databases together. We will consider the

15

2.2

2.3

2.4

introduction of SQL3 with object identity and abstract data types elsewhere since

these are hardly ‘legacy’ issues at the moment. It is important to explore precisely how
the 5 layer information model fits Sheth and Larson’s federation architecture model

especially with respect to the canonical data model. Topologically the cdm schema
sits directly on top of the local rdbms schema. Klas distinguishes between a

syntactically uniform schema and the subsequent semantically enriched versions of
that uniform schema [Klas94]. By considering relational schema as the starting point
we are excluding user defined datatypes so it is likely that the benefits of using an
object model may focus around behaviour. However by choosing to restrict our

investigation to non update queries we are excluding many of the areas that would
have benefited from OO.

From a practical point of view the relational tool set provides operations capable of
accessing the necessary data on the combined database tables. We are not concerned
here with simple changes to the format of data eg changing field size or modifying the
type. We will look at the things which the OO data model is considered to do well and
in which the relational model is deficient: 1) complex objects 2) aggregate attributes
3) functions for object behaviour 4) versioning 5) inheritance

Querying

In the environment for which this problem is being considered we do not think it
realistic to assume that if an object cdm is used as an intermediate schema then the
external schema would revert to the relational model. Rather we assume that if a
switch to an object schema is made then that would be maintained for the external
schema. However we are still concerned to make a distinction between the use of an
object programming language such as C++ as a superior programming paradigm and
the use of an object cdm and query language.

5 LAYER MODEL OF INFORMATION EXPRESSIVITY

Introduction

In this section we indicate the way that we partition our description of the different
versions of the information systems following the 5 layer model of information
expressivity. [Jef&al94]. It is important to note that we are not attempting to describe
the original information systems in terms of the 5 layer model; we are trying to focus
only on those features which are of interest to the application of queries relevant to
interoperation of version changed systems.

Semantic Layer

In the semantic layer we define the business rules that we are considering. The terms
will be defined in the way that the business sees them using a structured English.

Conceptual Layer

The conceptual modelling process is one of expressing the business in terms of one
specific data model. Different data modelling approachs use different tool boxes and
hence yield different descriptions. We propose to use SSADM in constructing our data
model since this methodology is often a central government requirement on its
contracts in the UK. The data model involves an Entity Relationship model, Entity
Life History models, and Data Flow models in which the processes are described in
structured mini specifications.

Intensional Layer

The intensional layer of the information system expresses the constraints that apply
to the data values of the attributes. Within databases the constraints can be represented
by triggers which are invoked by the database management system; typically these are
embedded in application code attached to tables or forms which are used for data
manipulation. These constraints may reflect the domain of the attribute or depend on

2.5

2.6

the values of other attributes. The satisfaction of a constraint may lead to the resetting
of attribute values. Access to certain data values may be restricted so that only
designated users could modify those data values.

Logical Layer

The logical layer expresses the conceptual model in terms of the underlying data
model of the database management system. This level is expressed in terms of the
schema of the database. For the system we are considering this was the relational data
model; we therefore assume the tables can be mapped to a union compatible form
across the version change and a query applied using the UNION operator. It is
important to recognize that the RM is different from the (E)ERM [Sal&al91] although
some authors consider the latter to be a thin skin over the former.

Physical Layer

The physical layer describes the way that the model is implemented physically on the
platform; for performance reasons this may differ significantly from the logical
schema.

ADDITION/REMOVAL OF A BUSINESS RULE

One of the commonest reasons that database systems change is that there is a change
in the business requirements. Usually this is based on the experience gained in running

a verion of the database. As a consequence a new business need is identified as a
business rule and the database schema and associated applications are modified.

In our system it was decided that it would be advantageous to record the stock levels
and the re-order levels for replacement parts. For the new system this was added to the
system; examination of the Future Work field/ Fault Description field / Fault
Clearance Field on the fault logs could be used to identify work which was not
completed because of a lack of parts. This could be used to identify which parts
deliveries might have been problematic and need higher stocks holding to deal with
erratic delivery lead times. The stock re order level is not likely to be available
retrospectively from stores. Because we are looking for deviant behaviour related to
individual parts it would not be possible reconstruct the history by a rough
approximation. In this case the new rule can only be examined in the light of data in
the new system and interoperation on this feature may not be feasible.

Different arguments apply to the introduction of a database trigger which issues a
warning when a particular maintenance crew seeks to exceed 10% of its fault logs
being commited to further work required. The constraint is naturally described as
being represented in the intensional layer of the 5 layer model. In this case both old
and new systems are compatible at the logical and physical schema levels so no
specific additional semantics need to be introduced for interoperation.

We believe that further study should be given to this area using a wider range of case
studies: 1) to investigate a range of constraints 2) to assess implications of inter and
intra row constraints 3) to see whether removing a constraint from a system can lead
to an increase in complexity leading to semantic differences between systems

A CHANGE IN THE BUSINESS RULE BETWEEN VERSIONS

Here we will consider the example of the change in meaning of plant repair time. This
statistic is used as a measure of maintenance effectiveness; it indicates the time that
the plant was not available for use. For the OFLS the Repair Time was calculated as
the difference between the time the fault was logged and the time the fault was cleared.
However improved performance against this statistic may not lead to improved
business performance. There is a period each night when plant is not required because
aircraft movements are not permitted; we call this a silent window. Paying night shift
rates for staff to have plant ready for use during the silent window may make the
statistics look better but is a poorer business strategy. In the NFLS the silent window

6.2

6.2.1

for each plant group is recorded and deducted from the repair time. This example has
been discussed extensively in a recent paper since it shows no change in the Repair
Time attribute at the database schema layer for the considerable difference at the
business rule (semantic) layer [DixKal95].

The calculation is straightforward but non trivial and is well suited to a programmed
function such as an object method. This is why it is stored as a calculated field rather
than simply calculated at with relational functions at retrieval time. Interoperation
may require recalculation of the OFLS Repair Time using semantics introduced at the
query level.

ADDITION OF SEMANTICS FOR SCHEMA RECONCILIATION

Here we will consider the example of plant renaming between versions. This is
essentially a classic Coulomb and Orlowska case in which an additional table and
additional data are introduced at the logical layer. This can be done in a completely
relational way.

ADDITION OF SEMANTICS FOR QUERY ENRICHMENT
Example 1

We first discuss an example where the user provides contextual information to add
semantics across versions so there is no change in the combined schema just in the
semantics. We consider the case of a tactical planner who wishes to calculate how the
cost of parts has varied over time. The later version of the database contains a parts
inventory which includes current unit pricing. For most practical purposes the user
could decide that this represents a current price approximation and therefore
appropriate for the analysis of cost variation. If this were the only semantic difficulty
associated with the version change then the relational data model would be adequate
for the purpose; see however the section below on restructuring the schema for why
this is not the case for our demonstrator system.

Example 2

A tactical planner may well wish to consider alternative possibilities to the ones
represented by the states of the databases. Here we will consider the example of
additional silent windows for repair time. In the scenarios for this example there are
four different types of semantic changes being considered in addition to that required
for schema reconciliation:

o Firstly we are altering the business rule for the definition of Repair Time.

o Secondly we are altering the schema to define the extra data required.

o Thirdly we are introducing new data associated with the silent window.

o Consequent on this the code for the calculation of the Repair Time must accomodate
the new business rule.

For new data and semantics to be introduced in this way rather than through the
specific modification of the base schema we assume that the modification can be
expressed in a very few terms at the time of querying; eg the additional silent window
is the same for all the plant subject to the query in that local database.

Scenario 1

In one scenario we are considering there being more than one silent window of the
same type. This could arise when say it was recognised that a particular Terminal
handling long haul flights had an inactive period during part of the afternoon. In doing
this we are moving the calculation of Repair Time from a data capture to a data
analysis operation for the revised semantics.

Taking an object approach, the object features relevant here would be

1) the possibility of using collection attributes to allow more than one silent window;
this would appear to be of minor importance compared to the relational alternative.
2) object operations in the cdm which returned a revised value for the Repair Time

6.2.2

depending on the context. This would be an extremely convenient feature as it locates
the required functionality in one overloaded operation.

3) versioning so that the additional semantics introduced at this point did not
compromise the integrity of the cdm. However this feature does not seem to be a
standard feature of C++ or the object profile of ODMG.

Scenario 2

In another scenario we are considering there being more than one type of window; the
second type of window being introduced for the lag between ordering and delivery of
parts by a supplier. Here it is reasonable to assume that there would need to be specific
capture of the order lead times for the replacement parts. Under these circumstances
the considerations that are relevant are more appropriate to a change in business rule
than to added semantics on querying enrichment.

RESTRUCTURING OF SCHEMA CHANGING ATOMICITY

Here we will consider example of Parts Used being seperated out from a free text
window. This changing of atomicity of the attribute effectively means that the
attribute becomes a structure type when additional rules for interpretation are added.
We have already shown that although this leads to a significant restructuring of the
schema the changes are located down at the logical layer using the terminology of the
5 layer information expressivity model [DixKal95].

There are three features that we need to consider here.

1) Complex object: The old version, OFLS, has an attribute which has a complex
structure which would become Part_Number and Part_Quantity in the new version,
NFLS. This is most naturally represented by a 2 dimensional array. It would appear
that ODMG support single dimensional arrays with access by integer specifying
position while Ontos/C++ supports a dictionary in which Part_Number could be used
to access Part_Quantity; this would not be suitable for more attributes. The alternative
is to define a structured object type consisting of Part_Number and Part_Quantity with
each instance referencing the relevant fault log instance. However this is directly
analogous to the way NFLS is implemented; there appears to be the implication that
for this factor the relational model is adequate.

2) Behaviour: In Sheth and Larson’s 5 level architecture there is a transformation
operator relating the local and cdm schema. The mapping rules of the complex
attribute have been described elsewhere [DixKal95]. Here we are concerned with
whether the replacement of transformation application code operators and a target
relational schema by an object in which the transformation is part of the instance
creator function is a significant improvement. For clean data there would appear to be
little difference; however the OFLS attribute is likely to be quite dirty in terms of non
standardised naming, absence of quantities, non standard or missing terminators,
extraneous comments. A nice feature would be that querying could be defined on
version changed objects with the same interface; the transformation rules being
explicitly linked to the version object type.

3) Aggregate: - see 1) above

CONCLUSIONS

1. Semantics added in the query means that we need to allow for dynamic extension
to the schema from the query language.

2. 5 layer information expressivity classification allows us to distinguish between
different types of semantics introduced during interoperation:

- schema reco_n_cili_ation sema_ntics
- query reconciliation semantics

3. The application of new business rules which are constraints can be located in the
intensional layer alone. However more work needs to be done to see whether this is
truly representative of a wider set of constraints.

4. The main strength of object models for non update querying on relational systems
appeared to be in the close linking of methods to calculated attributes. C++ is a
superior form of C for programming although there is a high learning barrier.
Unfortunately the advantages of versioning do not appear standard. In our case study
the examples selected did not indicate inheritance would be an advantage. We wish to
explore further the introduction of querying semantics.

REFERENCES

[Cattell94] R G G Cattell (Editor), The Object Database Standard: ODMG-93 Release
1.1, pub Morgan Kaufmann, ISBN 1-55860-302-6

[CouOrl93] R M Coulomb & M Orlowska, Interoperability in Information Systems,
Technical Report 263, Department of Computer Science, University of Queensland,
1993.

[DixKal94] M Dixon & J Kalmus, Semantic Heterogeneity in Interoperating
Databases. An Invetsigation based upon Engineering Maintenance. Proceedings of
the EDRGW6 on Deductive and Interoperable Databases (Barcelona), 1994.
[DixKal95] M Dixon & J Kalmus, A 5 Layer Information Expressivity Model Applied

to Semantic Heterogeneity in a Decentralised Organisation. Paper in preparation.
[Framp86] A Frampton Planned Maintenance System, Report BAAPMS.Z1, DM
England & Partners, 1986

[HurBriPak94] A R Hurson, M W Bright, and S Pakzad, Multidatabase Systems: An
Advanced Solution to Global Information Sharing, pub IEEE Computer Society
Press, ISBN 0-8186-4422-2.

[Jef&al94] K G Jeffery, L Hutchinson, J Kalmus, M Wilson, W Behrendt, C Macnee,
A Model for Heterogeneous Distributed Database Systems, BNCOD12, Springer
Verlag Lecture Notes in Computer Science 826, p221, 1994.

[Klas94] W Klas Interoperable Databases. Proceedings of the EDRGW6 on
Deductive and Interoperable Databases (Barcelona), 1994.

[Sal&al91] F Saltor, M Castellanos, M Garcia-Solaco Suitability of Data Models as
Canonical Models for Federated Databases, SIGMOD Record 20(4), p44, 1991.
[SheLar90] A P Sheth & J A Larson, Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases, ACM Computing Surveys
22(3), 183, 1990.

ACRONYMS

BNCOD British National Conference on Databases
cdm canonical data model

ERCIM European Research Consortium for Informatics and Mathematics
EDRGW ERCIM Database Research Group Workshop
(E)ERM (Extended) Entity Relationship Model

NFLS New Fault Logging System

ODMG Object Database Management Group

OFLS Old Fault Logging System

OO Object Oriented

rdbms Relational Database Management System

RM Relational Model

APPENDIX 1

Definition of Old Fault Log Entity

Attribute
Fault Number
Report Time
Plant Name
Plant Group
Location
Area

Cost Code
Fault Title
Fault Descrip
Crew

Report by
Clearence
Future Work
Complete Time
Repair Time

PartsUsed

Definition

System issued unique number

Date/Time when fault logged; autostamped
Unique name for plant item

Category of Plant

Place where plant is located in Terminal
Grid value

Head of charge for work

Summary of Description of Fault

Full description of fault

Maintenance Crew responsible for work
Person issuing initial fault report

Action and comments taken to clear fault
Engineers view of further work needed on it
Date/Time engineers report fault cleared
Time out of service

A list of parts used in repair

APPENDIX 2

Defintion of Plant Entity
Attribute

Plant Number
PlantDescript
Plant Group
Location

Area

Cost code
Datelnstalled
Manufacturer
BeginNotNeed
EndNotinNeed

Definition of New Fault Log Entity
Attribute

Fault Number
Fault Year
Report Time
Plant Numer
Fault Title
Fault Descrip
Crew

Report by
Clearence
Future Work
Complete Time
Repair Time

PartsUsed

Definition

Unique Nato code for plant

Working name for plant; unique

Type of plant

Place where plant is in terminal

Grid reference

Head of charge for work

When plant was installed at airport

Name/address of plant manufacturer

Begin time when plant would not be needed

Time when plant needed again

Definition

System issued unique number within year
Code for year; unique fault year / number
Date/Time when fault logged; autostamped
Unigue NATO code; foreign key

Summary of Description of Fault

Full description of fault

Maintenance Crew responsible for work
Person issuing initial fault report

Action and comments taken to clear fault
Engineers view of further work needed on it
Date/Time engineers report fault cleared
Time out of service

A list of parts used in repair

Definition of Parts in Store Entity

Attribute Definition

PartNumber Nato code; unique

PartDescrip Common name for part; non unique
StoreLocation Which stores part is held
StockLevel Count of parts in stock
ReorderLevel Count of parts when should reorder

Definition of Parts Used on Fault Entity

Attribute Definition

PartNumber Nato code; unique

Fault Number Fault on which part was used; foreign key
Part Quantity Count of this part used on this fault

WorkOrderNum Identifies work order part used on; unique

APPENDIX 3

Figure 1: Entity Relationship Diagram of Conceptual Model for Repair Time allowing for
the possibility of more than one out of service window per plant item

PLANT

PLANT
SILENT WINDOW

FAULT LOG

Figure 2: Entity Relationship Diagram of Conceptual Model for Parts Used in a fault repair.

PLANT

FAULT LOG PART IN STORE

PART USED
ON FAULT

